Skip to main content
Log in

Ultra-Weak Time Operators of Schrödinger Operators

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In an abstract framework, a new concept on time operator, ultra-weak time operator, is introduced, which is a concept weaker than that of weak time operator. Theorems on the existence of an ultra-weak time operator are established. As an application of the theorems, it is shown that Schrödinger operators \({H_V}\) with potentials V obeying suitable conditions, including the Hamiltonian of the hydrogen atom, have ultra-weak time operators. Moreover, a class of Borel measurable functions \(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\) such that \(f({H_V})\) has an ultra-weak time operator is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arai, A.: Generalized weak Weyl relation and decay of quantum dynamics. Rev. Math. Phys. 17, 1071–1109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arai, A.: Some aspects of time operators. In: Quantum Bio-Informatics, pp. 26–35. World Scientific, Singapore (2008)

  3. Arai, A., Matsuzawa, Y.: Time operators of a Hamiltonian with purely discrete spectrum. Rev. Math. Phys. 20, 951–978 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Miyamoto, M.: A generalized Weyl relation approach to the time operator and its connection to the survival probability. J. Math. Phys. 42, 1038–1052 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Muga, G., Mayato, R.S., Egusquiza, I. (Eds.): Time in Quantum Mechanics. Vol. 1, 2nd edn. Springer, Berlin (2008)

  6. Muga, G., Mayato, R.S., Egusquiza, I. (eds.): Time in Quantum Mechanics, Vol. 2. Springer, Berlin (2009)

  7. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  ADS  MATH  Google Scholar 

  8. Aharonov, Y., Anandan, J.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697–1700 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. |it Izvestiia Academia Nauk 9, 122–128 (1945) (original Russian version). J. Phys. (USSR) 9, 249–254 (1945) (English version)

  10. Busch, P.: The time–energy uncertainty relation. arXiv:quant-ph/0105049 (2001)

  11. Pauli, W.: General Principles of Quantum Mechanics. Springer, Berlin (1980)

    Book  Google Scholar 

  12. Putnam, C.R.: Commutation Properties of Hilbert Space Operators and Related Topics. Springer, New York (1967)

    Book  MATH  Google Scholar 

  13. Galapon, E.A.: Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians. Proc. R. Soc. Lond. A 458, 2671–2689 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fuglede, B.: On the relation \(PQ-QP=-iI\). Math. Scand. 20, 79–88 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arai, A.: Mathematical theory of time operators in quantum physics. RIMS K\(\hat{\rm o}\)ky\(\bar{\rm u}\)roku 1609, 24–35 (2008)

  16. Arai, A.: Necessary and sufficient conditions for a Hamiltonian with discrete eigenvalues to have time operators. Lett. Math. Phys. 87, 67–80 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Arai, A., Matsuzawa, Y.: Construction of a Weyl representation from a weak Weyl representation of the canonical commutation relation. Lett. Math. Phys. 83, 201–211 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ichinose, T., Wakayama, M.: On the spectral zeta function for the non-commutative harmonic oscillator. Rep. Math. Phys. 59, 421–432 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Braak, D.: Integrability of the Rabi model. Phys. Rev. Lett. 107, 100401 (2011)

    Article  ADS  Google Scholar 

  20. Maciejewski, A.J., Przybylska, M., Stachowiak, T.: Full spectrum of the Rabi model. Phys. Lett. A 378, 16–20 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rabi, I.I.: On the process of space quantization. Phys. Rev. 49, 324–328 (1936)

    Article  ADS  MATH  Google Scholar 

  22. Rabi, I.I.: Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937)

    Article  ADS  MATH  Google Scholar 

  23. Teranishi, N.: A note on time operators. Lett. Math. Phys. 106, 1259–1263 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Arai, A.: Spectrum of time operators. Lett. Math. Phys. 80, 211–221 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Arai, A.: On the uniqueness of the canonical commutation relations. Lett. Math. Phys. 85, 15–25 (2008). Erratum: Lett. Math. Phys 89, 287 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Galapon, E.A., Caballar, R.F., Bahague Jr., R.T.: Confined quantum time of arrivals. Phys. Rev. Lett. 93, 180406 (2004)

    Article  ADS  Google Scholar 

  27. Hiroshima, F., Kuribayashi, S., Matsuzawa, Y.: Strong time operator of generalized Hamiltonians. Lett. Math. Phys. 87, 115–123 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  29. Arai, A.: Representation theoretic aspects of two-dimensional quantum systems in singular vector potentials: canonical commutation relations, quantum algebras, and reduction to lattice quantum systems. J. Math. Phys. 39, 2476–2498 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Schmüdgen, K.: On the Heisenberg commutation relation. II. Publ. RIMS Kyoto Univ. 19, 601–671 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Arai, A.: Mathematics of Quantum Phenomena. Asakura Butsurigaku Taikei 12, Asakura Shoten (2006) (in Japanese)

  32. Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Bauer, M.: A time operator in quantum mechanics. Ann. Phys. 150, 1–21 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Fujiwara, I.: Rational construction and physical signification of the quantum time operator. Prog. Theor. Phys. 64, 18–27 (1980)

    Article  ADS  MATH  Google Scholar 

  35. Fujiwara, I., Wakita, K., Yoro, H.: Explicit construction of time–energy uncertainty relationship in quantum mechanics. Prog. Theor. Phys. 64, 363–379 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Goto, T., Yamaguchi, K., Sudo, N.: On the time operator in quantum mechanics. Prog. Theor. Phys. 66, 1525–1538 (1981)

    Article  ADS  MATH  Google Scholar 

  37. Goto, T., Yamaguchi, K., Sudo, N.: On the time operator in quantum mechanics. II. Prog. Theor. Phys. 66, 1915–1925 (1981)

    Article  ADS  MATH  Google Scholar 

  38. Dorfmeister, G., Dorfmeister, J.: Classification of certain pairs of operators \( (P, Q)\) satisfying \(=-i{\rm Id}\). J. Funct. Anal. 57, 301–328 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jørgensen, P.E.T., Muhly, P.S.: Self-adjoint extensions satisfying the Weyl operator commutation relations. J. Anal. Math. 37, 46–99 (1980)

    Article  MATH  Google Scholar 

  40. Schmüdgen, K.: On the Heisenberg commutation relation. I. J. Funct. Anal. 50, 8–49 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Richard, S., Tiedra de Aldecoa, R.: On a new formula relating localisation operators to time operators. Spectral analysis of quantum Hamiltonians, pp. 301–338. Oper. Theory Adv. Appl. 224. Birkhäuser/Springer Basel AG, Basel (2012)

  42. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1976)

    MATH  Google Scholar 

  43. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Academic, New York (1972). 1980 (revised and enlarged edition)

    MATH  Google Scholar 

  44. Thaller, B.: The Dirac Equation. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  45. Kuroda, S.-T.: Spectral Theory. Iwanami Shoten, Tokyo (1970). (in Japanese)

    Google Scholar 

  46. Reed, M., Simon, B.: Methods of Modern Mathematical Physics III. Academic, New York (1979)

    MATH  Google Scholar 

  47. Sasaki, I., Wada, K.: Private communication

  48. Parmeggian, A.: Spectral Theory of Non-commutative Harmonic Oscillators: An Introduction, Lecture Notes in Mathematics, vol. 1992. Springer, Berlin (2010)

    Book  Google Scholar 

  49. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Academic, New York (1975)

    MATH  Google Scholar 

  50. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV. Academic, New York (1978)

    MATH  Google Scholar 

  51. Fournais, S., Skibsted, E.: Zero energy asymptotics of the resolvent for a class of slowly decaying potentials. Math. Z. 248, 593–633 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 2(121), 463–494 (1985)

    Article  MATH  Google Scholar 

  53. Uchiyama, J.: Polynomial growth or decay of eigenfunctions of second-order elliptic operators. Publ. RIMS. Kyoto Univ. 23, 975–1006 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Hiroshima.

Additional information

Communicated by David Perez-Garca.

This research was supported by KAKENHI 15K04888 from JSPS (A.A.), partially supported by CREST, JST, and Challenging Exploratory Research 15K13445 from JSPS (F.H).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, A., Hiroshima, F. Ultra-Weak Time Operators of Schrödinger Operators. Ann. Henri Poincaré 18, 2995–3033 (2017). https://doi.org/10.1007/s00023-017-0586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0586-x

Navigation