Abstract
We consider a driven open system whose evolution is described by a Lindbladian. The Lindbladian is assumed to be dephasing and its Hamiltonian part to be given by the Landau–Zener Hamiltonian. We derive a formula for the transition probability which, unlike previous results, extends the Landau–Zener formula to open systems.
Similar content being viewed by others
References
Avishai, Y., Band, Y.B.: Landau–Zener problem with decay and dephasing. Phys. Rev. A 90, 032116 (2014). doi:10.1103/PhysRevA.90.032116
Avron, J.E., Fraas, M., Graf, G.M., Grech, P.: Adiabatic theorems for generators of contracting evolutions. Commun. Math. Phys. 314(1), 163–191 (2012). doi:10.1007/s00220-012-1504-1
Avron, J.E., Fraas, M., Graf, G.M., Grech, P.: Landau–Zener tunneling for dephasing Lindblad evolutions. Commun. Math. Phys. 305, 633–639 (2011). doi:10.1007/s00220-011-1269-y
Avron, J.E., Fraas, M., Graf, G.M.: Adiabatic response for Lindblad dynamics. J. Stat. Phys. 148(5), 800–823 (2012). doi:10.1007/s10955-012-0550-6
Berry, M.V.: Histories of adiabatic quantum transitions. Proc. R. Soc. Lond. Ser. A 429(1876) (1990). doi:10.1098/rspa.1990.0051
Betz, V., Teufel, S.: Landau–Zener formulae from adiabatic transition histories. In: Asch, J., Joye, A. (eds.) Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics, vol. 690, pp. 19–32. Springer, Berlin (2006)
Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, Berlin (1979)
Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39(2), 1–110 (1974). doi:10.1007/BF01608389
Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)
Feynman, R.P., Vernon, F.L.: The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963). doi:10.1016/0003-4916(63)90068-X
Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821–825 (1975). doi:10.1063/1.522979
Joye, A.: Proof of the Landau–Zener formula. Asymptot. Anal. 9(3), 209–258 (1994). doi:10.3233/ASY-1994-9302
Landau, L.: Zur Theorie der Energieübertragung. II. Phys. Z. Sowjet. 2, 46–51 (1932)
Legget, A.J., et al.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59(1) (1987). doi:10.1103/RevModPhys.59.1
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976). doi:10.1007/BF01608499
Majorana, E.: Atomi orientati in campo magnetico variabile. Il Nuovo Cimento (1932). doi:10.1007/BF02960953
Pokrovsky, V.L., Sinitsyn, N.A.: Fast noise in the Landau–Zener theory. Phys. Rev. B 67, 144303 (2003). doi:10.1103/PhysRevB.67.144303
Shimshoni, E., Gefen, Y.: Onset of dissipation in Zener dynamics: relaxation versus dephasing. Ann. Phys. 210(1), 16–80 (1991). doi:10.1016/0003-4916(91)90275-D
Shimshoni, E., Stern, A.: Dephasing of interference in Landau–Zener transitions. Phys. Rev. B 47, 9523 (1993). doi:10.1103/PhysRevB.47.9523
Xu, C., Poudel, A., Vavilov, M.G.: Nonadiabatic dynamics of a slowly driven dissipative two-level system. Phys. Rev. A 89, 052102 (2014). doi:10.1103/PhysRevA.89.052102
Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. Ser. A137(833) (1932). doi:10.1098/rspa.1932.0165
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Claude Alain Pillet.
Rights and permissions
About this article
Cite this article
Fraas, M., Hänggli, L. On Landau–Zener Transitions for Dephasing Lindbladians. Ann. Henri Poincaré 18, 2447–2465 (2017). https://doi.org/10.1007/s00023-017-0567-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-017-0567-0