Skip to main content
Log in

On Landau–Zener Transitions for Dephasing Lindbladians

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider a driven open system whose evolution is described by a Lindbladian. The Lindbladian is assumed to be dephasing and its Hamiltonian part to be given by the Landau–Zener Hamiltonian. We derive a formula for the transition probability which, unlike previous results, extends the Landau–Zener formula to open systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avishai, Y., Band, Y.B.: Landau–Zener problem with decay and dephasing. Phys. Rev. A 90, 032116 (2014). doi:10.1103/PhysRevA.90.032116

    Article  ADS  Google Scholar 

  2. Avron, J.E., Fraas, M., Graf, G.M., Grech, P.: Adiabatic theorems for generators of contracting evolutions. Commun. Math. Phys. 314(1), 163–191 (2012). doi:10.1007/s00220-012-1504-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Avron, J.E., Fraas, M., Graf, G.M., Grech, P.: Landau–Zener tunneling for dephasing Lindblad evolutions. Commun. Math. Phys. 305, 633–639 (2011). doi:10.1007/s00220-011-1269-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Avron, J.E., Fraas, M., Graf, G.M.: Adiabatic response for Lindblad dynamics. J. Stat. Phys. 148(5), 800–823 (2012). doi:10.1007/s10955-012-0550-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Berry, M.V.: Histories of adiabatic quantum transitions. Proc. R. Soc. Lond. Ser. A 429(1876) (1990). doi:10.1098/rspa.1990.0051

  6. Betz, V., Teufel, S.: Landau–Zener formulae from adiabatic transition histories. In: Asch, J., Joye, A. (eds.) Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics, vol. 690, pp. 19–32. Springer, Berlin (2006)

  7. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  8. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39(2), 1–110 (1974). doi:10.1007/BF01608389

    Article  MathSciNet  MATH  Google Scholar 

  9. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)

    MATH  Google Scholar 

  10. Feynman, R.P., Vernon, F.L.: The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963). doi:10.1016/0003-4916(63)90068-X

    Article  ADS  MathSciNet  Google Scholar 

  11. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821–825 (1975). doi:10.1063/1.522979

    Article  ADS  MathSciNet  Google Scholar 

  12. Joye, A.: Proof of the Landau–Zener formula. Asymptot. Anal. 9(3), 209–258 (1994). doi:10.3233/ASY-1994-9302

    MathSciNet  MATH  Google Scholar 

  13. Landau, L.: Zur Theorie der Energieübertragung. II. Phys. Z. Sowjet. 2, 46–51 (1932)

    MATH  Google Scholar 

  14. Legget, A.J., et al.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59(1) (1987). doi:10.1103/RevModPhys.59.1

  15. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976). doi:10.1007/BF01608499

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Majorana, E.: Atomi orientati in campo magnetico variabile. Il Nuovo Cimento (1932). doi:10.1007/BF02960953

  17. Pokrovsky, V.L., Sinitsyn, N.A.: Fast noise in the Landau–Zener theory. Phys. Rev. B 67, 144303 (2003). doi:10.1103/PhysRevB.67.144303

    Article  ADS  Google Scholar 

  18. Shimshoni, E., Gefen, Y.: Onset of dissipation in Zener dynamics: relaxation versus dephasing. Ann. Phys. 210(1), 16–80 (1991). doi:10.1016/0003-4916(91)90275-D

    Article  ADS  Google Scholar 

  19. Shimshoni, E., Stern, A.: Dephasing of interference in Landau–Zener transitions. Phys. Rev. B 47, 9523 (1993). doi:10.1103/PhysRevB.47.9523

    Article  ADS  Google Scholar 

  20. Xu, C., Poudel, A., Vavilov, M.G.: Nonadiabatic dynamics of a slowly driven dissipative two-level system. Phys. Rev. A 89, 052102 (2014). doi:10.1103/PhysRevA.89.052102

    Article  ADS  Google Scholar 

  21. Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. Ser. A137(833) (1932). doi:10.1098/rspa.1932.0165

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fraas.

Additional information

Communicated by Claude Alain Pillet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraas, M., Hänggli, L. On Landau–Zener Transitions for Dephasing Lindbladians. Ann. Henri Poincaré 18, 2447–2465 (2017). https://doi.org/10.1007/s00023-017-0567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0567-0