Skip to main content
Log in

On the Hydrostatic Approximation of Compressible Anisotropic Navier–Stokes Equations–Rigorous Justification

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this work, we derive the hydrostatic approximation by taking the small aspect ratio limit to the Navier–Stokes equations. The aspect ratio (the ratio of the depth to horizontal width) is a geometrical constraint in the general large scale geophysical motions meaning that the vertical scale is significantly smaller than horizontal. We derive the versatile relative entropy inequality. Applying the versatile relative entropy inequality we gave the rigorous derivation of the limit from the compressible Navier–Stokes equations to the compressible Primitive Equations. This is the first work where the relative entropy inequality was used for proving hydrostatic approximation - the compressible Primitive Equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For completeness we will write the system (PE):

    $$\begin{aligned} \left\{ \begin{array}{l} \partial _t {\mathbf {v}}+\text {div}_x({\mathbf {v}}\otimes {\mathbf {v}})+\partial _z (\mathbf{vw})+\nabla _x p=\Delta _x{\mathbf {v}}+\partial _{zz}{\mathbf {v}},\\ \partial _zp=0\\ \text {div}_x {\mathbf {v}}+\partial _z w=0, \end{array}\right. \end{aligned}$$
    (1.3)
  2. Let us mention that explanation of the periodicity boundary conditions for compressible PE can be found in paper by Liu and Titi–arxiv:1905.09367, Page 4, line 14.

  3. By (PE) we mean the incompressible Primitive Equation.

  4. Let us emphasize the result of Bresch and Jabin is valid only for small coefficients of viscosities.

  5. The calcuation of \(\rho w\) can be seen in details see Liu and Titi [46] page 1920 and see [54], page 4.

  6. The idea of relative entropy inequality was introduced by Dafermos [17] for hyperbolic equations and by Germain ([32]) to fluid dynamics. After that Feireisl and his coauthors proved that the relative entropy inequality is valid for all smooth test functions with appropriate boundary conditions, see [23]. Precisely, the test functions \(r, {\varvec{U}}\) in the relative entropy inequality are arbitrary smooth, r strictly positive, and \({\varvec{U}}\) satisfy the corresponding boundary conditions. Moreover, it is easy to check that the relative entropy inequality is satisfied as an equality as soon as the solution \(\rho , {{\varvec{u}}}\) is smooth enough. Moreover there is shown so-called the weak-strong uniqueness principle, which means that if the initial data of weak solutions and strong solutions coincide, weak solutions coincide with the unique strong solution on the time interval where the strong solution lives. This principle gives us the possibility to use relative entropy inequality and weak-strong principle to show e.g. singular limits from weak solutions to strong solution with corresponding scaling if the corresponding reminder can be estimated in appropriate way. For details see e.g. book of Feireisl, Novotný, [24].

References

  1. Abbatiello, A., Feireisl, E., Novotný, A.: Generalized solutions to models of compressible viscous fluids. Discrete Contin. Dyn. Syst. 41, 1–28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azérad, P., Guillén, F.: Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J. Math. Anal. 33, 847–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bella, P., Feireisl, E., Novotný, A.: Dimension reduction for compressible viscous fluids. Acta Appl. Math. 134, 111–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besson, O., Laydi, M.R.: Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation. ESAIM:M2AN 7, 855–865 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenier, Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12, 495–512 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Brenier, Y.: Remarks on the derivation of the hydrostatic Euler equations. Bull. Sci. Math. 127, 585–595 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bresch, D., Guillén-González, F., Masmoudi, N., Rodríguez-Bellido, M.A.: On the uniqueness of weak solutions of the two-dimensional primitive equations. Differential Integral Equations 16, 77–94 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Bresch, D., Kazhikhov, A., Lemoine, J.: On the two-dimensional hydrostatic Navier-Stokes equations, SIAM. J. Math. Anal. 36, 796–814 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Bresch, D., Lemoine, J., Simon, J.: A vertical diffusion model for lakes. SIAM J. Math. Anal. 30, 603–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bresch, D., Jabin, P.E.: Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann. Math. 188, 577–684 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bresch, D., Burtea, C.: Global existence of weak solutions for the anisotropic compressible Stokes system, accepted by Ann. I. H. Poincaré

  12. Bryan, K.: A numerical method for the study of the circulation of the world ocean. J. Comp. Phys. 4, 347–376 (1969)

    Article  ADS  MATH  Google Scholar 

  13. Cao, C.S., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, C.S., Li, J.K., Titi, E.S.: Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity. Arch. Ration. Mech. Anal. 214, 35–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, C.S., Li, J.K., Titi, E.S.: Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion. Comm. Pure Appl. Math. 69, 1492–1531 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, C.S., Li, J.K., Titi, E.S.: Strong solutions to the 3D primitive equations with only horizontal dissipation: near \(H^1\) initial data. J. Funct. Anal. 272, 4606–4641 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70, 167–179 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Donatelli, D., Juhasz, N.: The primitive equations of the polluted atmosphere as a weak and strong limit of the 3D Navier–Stokes equations in downwind-matching coordinates, arXiv:2001.05387

  19. Ducomet, B., Nečasová, Š, Pokorný, M., Rodríguez-Bellido, M.A.: Derivation of the Navier-Stokes-Poisson system with radiation for an accretion disk. J. Math. Fluid Mech. 20, 697–719 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ersoy, M., Ngom, T., Sy, M.: Compressible primitive equations: formal derivation and stability of weak solutions. Nonlinearity 24, 79–96 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ersoy, M., Ngom, T.: Existence of a global weak solution to one model of compressible primitive equations. C. R. Math. Acad. Sci. Paris 350, 379–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feireisl, E.: Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004)

    Google Scholar 

  23. Feireisl, E., Jin, J.B., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14, 717–730 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel (2009)

    MATH  Google Scholar 

  25. Feireisl, E., Gallagher, I., Novotný, A.: A singular limit for compressible rotating fluids. SIAM J. Math. Anal. 44(1), 192–205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feireisl, E., Jin, J.B., Novotný, A.: Inviscid incompressible limits of strongly stratified fluids. Asymptot. Anal. 89, 307–329 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Furukawa, K., Giga, Y., Hieber, M., Hussein, A., Kashiwabara, T.: Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier–Stokes equations, arXiv:1808.02410

  28. Furukawa, K., Giga, Y., Kashiwabara, T.: The hydrostatic approximation for the primitive equations by the scaled Navier–Stokes Equations under the no-slip boundary condition, arXiv:2006.02300

  29. Gao, H.J., Nečasová, Š, Tang, T.: On the hydrostatic approximation of compressible anisotropic Navier-Stokes equations. C. R. Math. 6, 639–644 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Gao, H.J., Nečasová, Š, Tang, T.: On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete Contin. Dyn. Syst. Ser. A 40, 4287–4305 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gatapov, B.V., Kazhikhov, A.V.: Existence of a global solution of a model problem of atmospheric dynamics. Siberian Math. J. 46, 805–812 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Germain, P.: Weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J. Math. Fluid Mech. 13, 137–146 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Guillén-González, F., Masmoudi, N., Rodríguez-Bellido, M.A.: Anisotropic estimates and strong solutions of the primitive equations. Differ. n.a Equ. 14, 1381–1408 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Guo, B.L., Huang, D.W.: Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere. J. Differ. Equ. 251, 457–491 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Guo, B.L., Huang, D.W., Wang, W.: Diffusion limit of 3D primitive equations of the large-scale ocean under fast oscillating random force. J. Differ. Equ. 259, 2388–2407 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Hieber, M., Kashiwabara, T.: Global strong well-posedness of the three dimensional primitive equations in \(L^p\)-spaces. Arch. Ration. Mech. Anal. 221, 1077–1115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ju, N.: The global attractor for the solutions to the 3d viscous primitive equations. Discrete Contin. Dyn. Syst. 17, 159–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kreml, O., Nečasová, Š, Piasecki, T.: Local existence of strong solution and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains. Proc. Roy. Soc. Edinburgh Sect. A 150, 2255–2300 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, J.K., Titi, E.S.: The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: rigorous justification of the hydrostatic approximation. J. Math. Pures Appl. 124, 30–58 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lions, J.L., Temam, R., Wang, S.H.: On the equations of the large-scale ocean. Nonlinearity 5, 1007–1053 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Lions, J.L., Temam, R., Wang, S.H.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5, 237–288 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Lions, J.L., Temam, R., Wang, S.H.: Mathematical theory for the coupled atmosphere-ocean models, (CAO III). J. Math. Pures Appl. 74, 105–163 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Lions, J.L., Temam, R., Wang, S.H.: On mathematical problems for the primitive equations of the ocean: the mesoscale midlatitude case. Nonlinear Anal. 40, 439–482 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, X., Titi, E.S.: Local well-posedness of strong solutions to the three-dimensional compressible Primitive Equations, arXiv:1806.09868v1

  45. Liu, X., Titi, E.S.: Global existence of weak solutions to the compressible Primitive Equations of atmosphereic dynamics with degenerate viscositites. SIAM J. Math. Anal. 51, 1913–1964 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, X., Titi, E.S.: Zero Mach number limit of the compressible Primitive Equations Part I: well-prepared initial data. Arch. Ration. Mech. Anal. 238, 705–747 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Maltese, D., Novotný, A.: Compressible Navier-Stokes equations on thin domains. J. Math. Fluid Mech. 16, 571–594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Masmoudi, N., Wong, T.K.: On the \(H^s\) theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204, 231–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  50. Paicu, M., Zhang, P., Zhang, Z.F.: On the hydrostatic approximation of the Navier-Stokes equations in a thin strip. Adv. Math. 372, 107293, 42 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pedlosky, W.M.: Geophysical Fluid Dynamics. Springer-Verlag, Berlin (1979)

    Book  MATH  Google Scholar 

  52. Tang, T., Gao, H.J.: On the stability of weak solution for compressible primitive equations. Acta Appl. Math. 140, 133–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, (2004)

  54. Wang, F.C., Dou, C.S., Jiu, Q.S.: Global weak solutions to 3D compressible primitive equations with density-dependent viscosity. J. Math. Phys. 61(2), 021507, 33 (2020)

    Article  MATH  Google Scholar 

  55. Washington, W.M., Parkinson, C.L.: An Introduction to Three-Dimensional Climate Modelling. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very much indebted to the anonymous referees for many helpful suggestions. Moreover, we would like to thank to Prof. A. Novotný for his remarks and suggestions during his visit in Prague in the spring 2021. We thank to Prof. Edriss Titi for his wonderful and great talks on the course“compact course Mathematical Analysis of Geophysical Models and Data Assimilation” held from 26 June to 10 July 2020, which offers insightful and constructive suggestions. The research of H. G is partially supported by the NSFC Grant No. 12171084 and the fundamental Research Funds for the Central Universities No. 2242022R10013. The research of Š.N. was supported by the Czech Sciences Foundation (GAČR), GA19-04243S, 22-01591S (final version), Premium Academia of Š. Nečasová and RVO 67985840. The research of T.T. was supported by the NSFC Grant No. 11801138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová.

Ethics declarations

Conflicts of interest

The author(s) declares that they have no competing interests.

Additional information

Communicated by Tohru Ozawa.

Dedicated to Professor Yoshihiro Shibata on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Yoshihiro Shibata” edited by Tohru Ozawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Nečasová, Š. & Tang, T. On the Hydrostatic Approximation of Compressible Anisotropic Navier–Stokes Equations–Rigorous Justification. J. Math. Fluid Mech. 24, 86 (2022). https://doi.org/10.1007/s00021-022-00717-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00717-z

Keywords

Mathematics Subject Classification

Navigation