Skip to main content
Log in

Abstract

Let (X, μ) and (Y, ν) be standard measure spaces. A function \({\varphi\in L^\infty(X\times Y,\mu\times\nu)}\) is called a (measurable) Schur multiplier if the map S φ , defined on the space of Hilbert-Schmidt operators from L 2(X, μ) to L 2(Y, ν) by multiplying their integral kernels by φ, is bounded in the operator norm. The paper studies measurable functions φ for which S φ is closable in the norm topology or in the weak* topology. We obtain a characterisation of w*-closable multipliers and relate the question about norm closability to the theory of operator synthesis. We also study multipliers of two special types: if φ is of Toeplitz type, that is, if φ(x, y) = f(xy), \({x,y\in G}\), where G is a locally compact abelian group, then the closability of φ is related to the local inclusion of f in the Fourier algebra A(G) of G. If φ is a divided difference, that is, a function of the form (f(x) − f(y))/(xy), then its closability is related to the “operator smoothness” of the function f. A number of examples of non-closable, norm closable and w*-closable multipliers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson W.B.: Operator algebras and invariant subspaces. Ann. Math. (2) 100, 433–532 (1974)

    Article  MathSciNet  Google Scholar 

  2. Birman M.S., Solomyak M.Z.: Stieltjes double-integral operators. II (Russian). Prob. Mat. Fiz. 2, 26–60 (1967)

    MATH  Google Scholar 

  3. Birman M.S., Solomyak M.Z.: Stieltjes double-integral operators, III (Passage to the limit under the integral sign) (Russian). Prob. Mat. Fiz. 6, 27–53 (1973)

    Google Scholar 

  4. Birman M.S., Solomyak M.Z.: Operator integration, perturbations and commutators. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Issled. Linein. Oper. Teorii Funktsii. 17(170), 34–66 (1989)

    Google Scholar 

  5. Birman M.S., Solomyak M.Z.: Double operator integrals in a Hilbert space. Integr. Equ. Oper. Theory 47(2), 131–168 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blecher D.P., Smith R.: The dual of the Haagerup tensor product. J. Lond. Math. Soc. (2) 45, 126–144 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bozejko M., Fendler G.: Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group. Colloquium Math. 63, 311–313 (1992)

    Google Scholar 

  8. Comfort W.W., Gordon H.: Vitali’s theorem for invariant measures. Trans. Am. Math. Soc. 99, 83–90 (1961)

    MATH  MathSciNet  Google Scholar 

  9. Daletskii J.L., Krein S.G.: Integration and differentiation of functions of hermitian operators and applications to the theory of perturbations. Am. Math. Soc. Transl. (2) 47, 1–30 (1965)

    Google Scholar 

  10. Erdos J.A., Katavolos A., Shulman V.S.: Rank one subspaces of Bimodules over maximal abelian selfadjoint algebras. J. Funct. Anal. 157(2), 554–587 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Farforovskaya, Y.B.: An estimate of the norm ||f(A) − f(B)|| for selfadjoint operators A and B. Zap. Nauchn. Semin. LOMI 56, 143–162 (1976). (English transl. J. Sov. Math. 14, 1133–1149) (1980)

  12. Froelich J.: Compact operators, invariant subspaces and spectral synthesis. J. Funct. Anal. 81, 1–37 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gelfand I., Raikov D., Shilov G.: Commutative Normed Rings. Translated from the Russian, with a Supplementary Chapter. Chelsea Publishing Co., New York (1964)

    Google Scholar 

  14. Gohberg, I.C., Krein, M.G.: Theory and Applications of Volterra Operators in Hilbert Space. Translation of Mathematical Monographs, vol. 24. American Mathematical Society (1970)

  15. Graham C., McGehee O.C.: Essays in Commutative Harmonic Analysis. Springer-Verlag, New York (1979)

    MATH  Google Scholar 

  16. Grothendieck A.: Resume de la theorie metrique des produits tensoriels topologiques. Boll. Soc. Mat. Sao-Paulo 8, 1–79 (1956)

    MathSciNet  Google Scholar 

  17. Hewitt E., Ross K.A.: Abstract Harmonic Analysis, vol. I. Structure of Topological Groups, Integration Theory, Group Representations. Springer- Verlag, Berlin (1979)

    Google Scholar 

  18. Hewitt E., Stromberg K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. Springer-Verlag, New York (1965)

    MATH  Google Scholar 

  19. Kato T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1995)

    MATH  Google Scholar 

  20. Katznelson Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  21. Kissin E., Shulman V.S.: Operator multipliers. Pac. J. Math. 227(1), 109–141 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kissin E., Shulman V.S.: Classes of operator-smooth functions. I. Operator-Lipschitz functions. Proc. Edinb. Math. Soc. (2) 48(1), 151–173 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kissin E., Shulman V.S.: On the range inclusion of normal derivations: variations on a theme by Johnson, Williams and Fong. Proc. Lond. Math. Soc. (3) 83(1), 176–198 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lahiri B.K.: On translations of sets in topological groups. J. Indian Math. Soc. (N.S.) 39, 173–180 (1975)

    MATH  MathSciNet  Google Scholar 

  25. Mattila P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  26. Peller V.: Hankel operators in the theory of perturbations of unitary and selfadjoint operators (Russian). Funktsional. Anal. i Prilozhen. 19(2), 37–51 (1985) 96

    Article  MathSciNet  Google Scholar 

  27. Potapov, D., Sukochev, F.: Operator Lipschitz functions in Scahtten-von Neumann classes. Acta Math. (2010, to appear)

  28. Shulman V.S., Turowska L.: Operator synthesis I: synthetic sets, bilattices and tensor algebras. J. Funct. Anal. 209, 293–331 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shulman V.S., Turowska L.: Operator synthesis II: individual synthesis and linear operator equations. J. Reine Angew. Math. 590, 143–187 (2006)

    MATH  MathSciNet  Google Scholar 

  30. Spronk N., Turowska L.: Spectral synthesis and operator synthesis for compact groups. J. Lond. Math. Soc. (2) 66, 361–376 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rudin W.: Fourier Analysis on Groups. Wiley, New York (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Turowska.

Additional information

I. G. Todorov was supported by EPSRC grant D050677/1. L. Turowska was supported by the Swedish Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shulman, V.S., Todorov, I.G. & Turowska, L. Closable Multipliers. Integr. Equ. Oper. Theory 69, 29–62 (2011). https://doi.org/10.1007/s00020-010-1819-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-010-1819-2

Mathematics Subject Classification (2000)

Navigation