Skip to main content
Log in

Probing of the reactive center loop region of alpha-1-antitrypsin by mutagenesis predicts new type-2 dysfunctional variants

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Lung disease in alpha-1-antitrypsin deficiency (AATD) mainly results from insufficient control of the serine proteases neutrophil elastase (NE) and proteinase-3 due to reduced plasma levels of alpha-1-antitrypsin (AAT) variants. Mutations in the specificity-determining reactive center loop (RCL) of AAT would be predicted to minimally affect protein folding and secretion by hepatocytes but can impair anti-protease activity or alter the target protease. These properly secreted but dysfunctional ‘type-2’ variants would not be identified by common diagnostic protocols that are predicated on a reduction in circulating AAT. This has potential clinical relevance: in addition to the dysfunctional Pittsburgh and Iners variants reported previously, several uncharacterized RCL variants are present in genome variation databases. To prospectively evaluate the impact of RCL variations on secretion and anti-protease activity, here we performed a systematic screening of amino acid substitutions occurring at the AAT–NE interface. Twenty-three AAT variants that can result from single nucleotide polymorphisms in this region, including 11 present in sequence variation databases, were expressed in a mammalian cell model. All demonstrated unaltered protein folding and secretion. However, when their ability to form stable complexes with NE was evaluated by western blot, enzymatic assays, and a novel ELISA developed to quantify AAT–NE complexes, substrate-like and NE-binding deficient dysfunctional variants were identified. This emphasizes the ability of the RCL to accommodate inactivating substitutions without impacting the integrity of the native molecule and demonstrates that this class of molecule violates a generally accepted paradigm that equates circulating levels with functional protection of lung tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Supporting data are included as electronic supplementary material.

Abbreviations

AAT:

Alpha-1-antitrypsin

AATD:

Alpha-1-antitrypsin deficiency

ELISA:

Enzyme-linked immunosorbent assay

NE:

Neutrophil elastase

PPE:

Porcine pancreatic elastase

RCL:

Reactive center loop

SI:

Stoichiometry of inhibition

References

  1. Law RHP, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC (2006) An overview of the serpin superfamily. Genome Biol 7:216. https://doi.org/10.1186/gb-2006-7-5-216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanders CL, Ponte A, Kueppers F (2018) The effects of inflammation on alpha 1 antitrypsin levels in a national screening cohort. COPD 15:10–16. https://doi.org/10.1080/15412555.2017.1401600

    Article  PubMed  Google Scholar 

  3. Beatty K, Bieth J, Travis J (1980) Kinetics of association of serine proteinases with native and oxidized alpha-1-proteinase inhibitor and alpha-1-antichymotrypsin. J Biol Chem 255:3931–3934

    Article  CAS  PubMed  Google Scholar 

  4. Rao NV, Wehner NG, Marshall BC, Gray WR, Gray BH, Hoidal JR (1991) Characterization of proteinase-3 (PR-3), a neutrophil serine proteinase. Structural and functional properties. J Biol Chem 266:9540–9548. https://doi.org/10.1016/S0021-9258(18)92854-1

    Article  CAS  PubMed  Google Scholar 

  5. Patston P, Gettins P, Schapira M (1994) Serpins are suicide substrates: implications for the regulation of proteolytic pathways. Semin Thromb Hemost 20:410–416. https://doi.org/10.1055/s-2007-1001929

    Article  CAS  PubMed  Google Scholar 

  6. Dementiev A, Dobó J, Gettins PGW (2006) Active site distortion is sufficient for proteinase inhibition by serpins: structure of the covalent complex of alpha1-proteinase inhibitor with porcine pancreatic elastase. J Biol Chem 281:3452–3457. https://doi.org/10.1074/jbc.M510564200

    Article  CAS  PubMed  Google Scholar 

  7. Dementiev A, Simonovic M, Volz K, Gettins PGW (2003) Canonical inhibitor-like interactions explain reactivity of alpha1-proteinase inhibitor Pittsburgh and antithrombin with proteinases. J Biol Chem 278:37881–37887. https://doi.org/10.1074/jbc.M305195200

    Article  CAS  PubMed  Google Scholar 

  8. Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926. https://doi.org/10.1038/35038119

    Article  CAS  PubMed  Google Scholar 

  9. Schechter I, Berger A (1967) On the size of the active site in proteases. I Papain Biochem Biophys Res Commun 27:157–162. https://doi.org/10.1016/s0006-291x(67)80055-x

    Article  CAS  PubMed  Google Scholar 

  10. Calugaru SV, Swanson R, Olson ST (2001) The pH dependence of serpin-proteinase complex dissociation reveals a mechanism of complex stabilization involving inactive and active conformational states of the proteinase which are perturbable by calcium. J Biol Chem 276:32446–32455. https://doi.org/10.1074/jbc.M104731200

    Article  CAS  PubMed  Google Scholar 

  11. Greene CM, Marciniak SJ, Teckman J, Ferrarotti I, Brantly ML, Lomas DA, Stoller JK, McElvaney NG (2016) α1-Antitrypsin deficiency. Nat Rev Dis Primers 2:16051. https://doi.org/10.1038/nrdp.2016.51

    Article  PubMed  Google Scholar 

  12. Strnad P, McElvaney NG, Lomas DA (2020) Alpha1-Antitrypsin deficiency. N Engl J Med 382:1443–1455. https://doi.org/10.1056/NEJMra1910234

    Article  CAS  PubMed  Google Scholar 

  13. Gooptu B, Ekeowa UI, Lomas DA (2009) Mechanisms of emphysema in alpha1-antitrypsin deficiency: molecular and cellular insights. Eur Respir J 34:475–488. https://doi.org/10.1183/09031936.00096508

    Article  CAS  PubMed  Google Scholar 

  14. Lomas DA, Evans DL, Finch JT, Carrell RW (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 357:605–607. https://doi.org/10.1038/357605a0

    Article  CAS  PubMed  Google Scholar 

  15. Teckman JH, Perlmutter DH (1996) The endoplasmic reticulum degradation pathway for mutant secretory proteins alpha1-antitrypsin Z and S is distinct from that for an unassembled membrane protein. J Biol Chem 271:13215–13220. https://doi.org/10.1074/jbc.271.22.13215

    Article  CAS  PubMed  Google Scholar 

  16. Suri A, Patel D, Teckman JH (2022) Alpha-1 Antitrypsin deficiency liver disease. Clin Liver Dis 26:391–402. https://doi.org/10.1016/j.cld.2022.03.004

    Article  PubMed  Google Scholar 

  17. McElvaney GN, Sandhaus RA, Miravitlles M, Turino GM, Seersholm N, Wencker M, Stockley RA (2020) Clinical considerations in individuals with α1-antitrypsin PI*SZ genotype. Eur Respir J 55:1902410. https://doi.org/10.1183/13993003.02410-2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laffranchi M, Elliston EL, Miranda E, Perez J, Ronzoni R, Jagger AM, Heyer-Chauhan N, Brantly ML, Fra A, Lomas DA, Irving JA (2020) Intrahepatic heteropolymerization of M and Z alpha-1-antitrypsin. JCI Insight 5(e135459):135459. https://doi.org/10.1172/jci.insight.135459

    Article  PubMed  Google Scholar 

  19. Laffranchi M, Berardelli R, Ronzoni R, Lomas DA, Fra A (2018) Heteropolymerization of α-1-antitrypsin mutants in cell models mimicking heterozygosity. Hum Mol Genet 27:1785–1793. https://doi.org/10.1093/hmg/ddy090

    Article  CAS  PubMed  Google Scholar 

  20. Ferrarotti I, Carroll TP, Ottaviani S, Fra AM, O’Brien G, Molloy K, Corda L, Medicina D, Curran DR, McElvaney NG, Luisetti M (2014) Identification and characterisation of eight novel SERPINA1 Null mutations. Orphanet J Rare Dis 9:172. https://doi.org/10.1186/s13023-014-0172-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giacopuzzi E, Laffranchi M, Berardelli R, Ravasio V, Ferrarotti I, Gooptu B, Borsani G, Fra A (2018) Real-world clinical applicability of pathogenicity predictors assessed on SERPINA1 mutations in alpha-1-antitrypsin deficiency. Hum Mutat 39:1203–1213. https://doi.org/10.1002/humu.23562

    Article  CAS  PubMed  Google Scholar 

  22. Seixas S, Marques PI (2021) Known mutations at the cause of alpha-1 antitrypsin deficiency an updated overview of SERPINA1 variation spectrum. Appl Clin Genet 14:173–194. https://doi.org/10.2147/TACG.S257511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hua B, Fan L, Liang Y, Zhao Y, Tuddenham EGD (2009) α1-antitrypsin Pittsburgh in a family with bleeding tendency. Haematologica 94:881–884. https://doi.org/10.3324/haematol.2008.004739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Owen MC, Brennan SO, Lewis JH, Carrell RW (1983) Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med 309:694–698. https://doi.org/10.1056/NEJM198309223091203

    Article  CAS  PubMed  Google Scholar 

  25. Vidaud D, Emmerich J, Alhenc-Gelas M, Yvart J, Fiessinger JN, Aiach M (1992) Met 358 to Arg mutation of alpha 1-antitrypsin associated with protein C deficiency in a patient with mild bleeding tendency. J Clin Invest 89:1537–1543. https://doi.org/10.1172/JCI115746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laffranchi M, Elliston ELK, Gangemi F, Berardelli R, Lomas DA, Irving JA, Fra A (2019) Characterisation of a type II functionally-deficient variant of alpha-1-antitrypsin discovered in the general population. PLoS ONE 14:e0206955. https://doi.org/10.1371/journal.pone.0206955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. American Thoracic Society, European Respiratory Society (2003) American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med 168:818–900. https://doi.org/10.1164/rccm.168.7.818

    Article  Google Scholar 

  28. Ottaviani S, Bartoli G, Carroll TP, Gangemi F, Balderacchi AM, Barzon V, Corino A, Piloni D, McElvaney NG, Corsico AG, Irving JA, Fra A, Ferrarotti I (2023) Comprehensive clinical diagnostic pipelines reveal new variants in Alpha-1 antitrypsin deficiency. Am J Respir Cell Mol Biol 69:355–366. https://doi.org/10.1165/rcmb.2022-0470OC

    Article  CAS  PubMed  Google Scholar 

  29. Elliott PR, Pei XY, Dafforn TR, Lomas DA (2000) Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Sci 9:1274–1281. https://doi.org/10.1110/ps.9.7.1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patschull AOM, Segu L, Nyon MP, Lomas DA, Nobeli I, Barrett TE, Gooptu B (2011) Therapeutic target-site variability in α1-antitrypsin characterized at high resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:1492–1497. https://doi.org/10.1107/S1744309111040267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaillan-Huntington CE, Patston PA (1998) Influence of the P5 residue on α1-proteinase inhibitor mechanism. J Biol Chem 273:4569–4573. https://doi.org/10.1074/jbc.273.8.4569

    Article  CAS  PubMed  Google Scholar 

  32. Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079. https://doi.org/10.1093/bioinformatics/btm076

    Article  CAS  PubMed  Google Scholar 

  35. gnomAD v2.1.1 (2023) Serpina1. In: gnomAD v2.1.1. https://gnomad.broadinstitute.org/gene/ENSG00000197249?dataset=gnomad_r2_1. Accessed 28 Feb 2023

  36. ClinVar, NCBI (2023) Serpina1. In: ClinVar, NCBI. https://www.ncbi.nlm.nih.gov/clinvar/?term=serpina1%5Bgene%5D&redir=gene. Accessed 28 Feb 2023

  37. Fra A, Cosmi F, Ordoñez A, Berardelli R, Perez J, Guadagno NA, Corda L, Marciniak SJ, Lomas DA, Miranda E (2016) Polymers of Z α1-antitrypsin are secreted in cell models of disease. Eur Respir J 47:1005–1009. https://doi.org/10.1183/13993003.00940-2015

    Article  CAS  PubMed  Google Scholar 

  38. Miranda E, Pérez J, Ekeowa UI, Hadzic N, Kalsheker N, Gooptu B, Portmann B, Belorgey D, Hill M, Chambers S, Teckman J, Alexander GJ, Marciniak SJ, Lomas DA (2010) A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1-antitrypsin deficiency. Hepatology 52:1078–1088. https://doi.org/10.1002/hep.23760

    Article  CAS  PubMed  Google Scholar 

  39. Taylor JC, Crawford IP (1975) Purification and preliminary characterization of human leukocyte elastasel. Arch Biochem Biophys 169:91–101. https://doi.org/10.1016/0003-9861(75)90320-3

    Article  CAS  PubMed  Google Scholar 

  40. Engelmaier A, Weber A (2022) Sensitive and specific measurement of alpha1-antitrypsin activity with an elastase complex formation immunosorbent assay (ECFISA). J Pharm Biomed Anal 209:114476. https://doi.org/10.1016/j.jpba.2021.114476

    Article  CAS  PubMed  Google Scholar 

  41. Ordóñez A, Pérez J, Tan L, Dickens JA, Motamedi-Shad N, Irving JA, Haq I, Ekeowa U, Marciniak SJ, Miranda E, Lomas DA (2015) A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity. FASEB J 29:2667–2678. https://doi.org/10.1096/fj.14-267351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tan L, Perez J, Mela M, Miranda E, Burling KA, Rouhani FN, DeMeo DL, Haq I, Irving JA, Ordóñez A, Dickens JA, Brantly M, Marciniak SJ, Alexander GJM, Gooptu B, Lomas DA (2015) Characterising the association of latency with α1-antitrypsin polymerisation using a novel monoclonal antibody. Int J Biochem Cell Biol 58:81–91. https://doi.org/10.1016/j.biocel.2014.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maddur AA, Swanson R, Izaguirre G, Gettins PGW, Olson ST (2013) Kinetic intermediates en route to the final Serpin-Protease complex. J Biol Chem 288:32020–32035. https://doi.org/10.1074/jbc.M113.510990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Horvath AJ, Lu BGC, Pike RN, Bottomley SP (2011) Methods to measure the kinetics of protease inhibition by serpins. Methods Enzymol 501:223–235. https://doi.org/10.1016/B978-0-12-385950-1.00011-0

    Article  CAS  PubMed  Google Scholar 

  45. Schechter NM, Plotnick MI (2004) Measurement of the kinetic parameters mediating protease-serpin inhibition. Methods 32:159–168. https://doi.org/10.1016/s1046-2023(03)00207-x

    Article  CAS  PubMed  Google Scholar 

  46. Gorrini M, Lupi A, Iadarola P, Dos Santos C, Rognoni P, Dalzoppo D, Carrabino N, Pozzi E, Baritussio A, Luisetti M (2005) SP-A binds alpha1-antitrypsin in vitro and reduces the association rate constant for neutrophil elastase. Respir Res 6:146. https://doi.org/10.1186/1465-9921-6-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sinden NJ, Koura F, Stockley RA (2014) The significance of the F variant of alpha-1-antitrypsin and unique case report of a PiFF homozygote. BMC Pulm Med 14:132. https://doi.org/10.1186/1471-2466-14-132

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hood DB, Huntington JA, Gettins PGW (1994) Alpha1-proteinase inhibitor variant T345R. Influence of P14 residue on substrate and inhibitory pathways. Biochemistry 33:8538–8547. https://doi.org/10.1021/bi00194a020

    Article  CAS  PubMed  Google Scholar 

  49. George PM, Vissers MC, Travis J, Winterbourn CC, Carrell RW (1984) A genetically engineered mutant of alpha 1-antitrypsin protects connective tissue from neutrophil damage and may be useful in lung disease. Lancet 2:1426–1428. https://doi.org/10.1016/s0140-6736(84)91623-4

    Article  CAS  PubMed  Google Scholar 

  50. Bhakta V, Hamada M, Nouanesengsy A, Lapierre J, Perruzza DL, Sheffield WP (2021) Identification of an alpha-1 antitrypsin variant with enhanced specificity for factor XIa by phage display, bacterial expression, and combinatorial mutagenesis. Sci Rep 11:5565. https://doi.org/10.1038/s41598-021-84618-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cugno M, Zanichelli A, Foieni F, Caccia S, Cicardi M (2009) C1-inhibitor deficiency and angioedema: molecular mechanisms and clinical progress. Trends Mol Med 15:69–78. https://doi.org/10.1016/j.molmed.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  52. Corral J, de la Morena-Barrio ME, Vicente V (2018) The genetics of antithrombin. Thromb Res 169:23–29. https://doi.org/10.1016/j.thromres.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  53. Matheson NR, Gibson HL, Hallewell RA, Barr PJ, Travis J (1986) Recombinant DNA-derived forms of human alpha 1-proteinase inhibitor. Studies on the alanine 358 and cysteine 358 substituted mutants. J Biol Chem 261:10404–10409. https://doi.org/10.1016/S0021-9258(18)67538-6

    Article  CAS  PubMed  Google Scholar 

  54. Jallat S, Carvallo D, Tessier LH, Roecklin D, Roitsch C, Ogushi F, Crystal RG, Courtney M (1986) Altered specificities of genetically engineered alpha 1 antitrypsin variants. Protein Eng 1:29–35. https://doi.org/10.1093/protein/1.1.29

    Article  CAS  PubMed  Google Scholar 

  55. Haq I, Irving JA, Faull SV, Dickens JA, Ordóñez A, Belorgey D, Gooptu B, Lomas DA (2013) Reactive centre loop mutants of α-1-antitrypsin reveal position-specific effects on intermediate formation along the polymerization pathway. Biosci Rep 33:e00046. https://doi.org/10.1042/BSR20130038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Medicina D, Montani N, Fra AM, Tiberio L, Corda L, Miranda E, Pezzini A, Bonetti F, Ingrassia R, Scabini R, Facchetti F, Schiaffonati L (2009) Molecular characterization of the new defective Pbrescia alpha1-antitrypsin allele. Hum Mutat 30:E771–E781. https://doi.org/10.1002/humu.21043

    Article  PubMed  Google Scholar 

  57. Fra A, D’Acunto E, Laffranchi M, Miranda E (2018) Cellular models for the serpinopathies. Methods Mol Biol 1826:109–121. https://doi.org/10.1007/978-1-4939-8645-3_7

    Article  CAS  PubMed  Google Scholar 

  58. Núñez A, Belmonte I, Miranda E, Barrecheguren M, Farago G, Loeb E, Pons M, Rodríguez-Frías F, Gabriel-Medina P, Rodríguez E, Genescà J, Miravitlles M, Esquinas C (2021) Association between circulating alpha-1 antitrypsin polymers and lung and liver disease. Respir Res 22:244. https://doi.org/10.1186/s12931-021-01842-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Faull SV, Elliston ELK, Gooptu B, Jagger AM, Aldobiyan I, Redzej A, Badaoui M, Heyer-Chauhan N, Rashid ST, Reynolds GM, Adams DH, Miranda E, Orlova EV, Irving JA, Lomas DA (2020) The structural basis for Z α1-antitrypsin polymerization in the liver. Sci Adv 6:eabc1370. https://doi.org/10.1126/sciadv.abc1370

Download references

Acknowledgements

The authors thank Kaoutar Loukili and Giulia Bartoli for sharing reagents and protocols, Professor Fabrizio Gangemi (University of Brescia, Brescia, Italy) and Professor David A Lomas (UCL, London, UK) for insightful discussions of the work.

Funding

This work was mainly supported by a grant from the Alpha-1 Foundation USA (ID:829920) to AF. JAI is supported by the Medical Research Council UK (MR/V034243/1) and the Alpha-1 Foundation (ID: 1036784). EM was supported by the Alpha-1 Foundation (ID: 497841).

Author information

Authors and Affiliations

Authors

Contributions

AD and AF designed the research project; AD, EBK, MB, RG, EM, ED, and AF performed experiments; AD and JAI performed structural analysis; AD, EBK, MB, EM, JAI, and AF analyzed data; AD, JAI, and AF wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Annamaria Fra.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study does not involve human subjects or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1162 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denardo, A., Ben Khlifa, E., Bignotti, M. et al. Probing of the reactive center loop region of alpha-1-antitrypsin by mutagenesis predicts new type-2 dysfunctional variants. Cell. Mol. Life Sci. 81, 6 (2024). https://doi.org/10.1007/s00018-023-05059-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-05059-1

Keywords

Navigation