Skip to main content
Log in

Interference of a mammalian circRNA regulates lipid metabolism reprogramming by targeting miR-24-3p/Igf2/PI3K-AKT-mTOR and Igf2bp2/Ucp1 axis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

White adipose tissue (WAT) is important for regulating the whole systemic energy homeostasis. Excessive WAT accumulation further contributes to the development of obesity and obesity-related illnesses. More detailed mechanisms for WAT lipid metabolism reprogramming, however, are still elusive. Here, we report the abnormally high expression of a circular RNA (circRNA) mmu_circ_0001874 in the WAT and liver of mice with obesity. mmu_circ_0001874 interference achieved using a specific adeno-associated virus infects target tissues, down-regulating lipid accumulation in the obesity mice WAT, and liver tissues. Mechanistically, miR-24-3p directly interacts with the lipid metabolism effect of mmu_circ_0001874 and participates in adipogenesis and lipid accumulation by targeting Igf2/PI3K-AKT-mTOR axis. Moreover, mmu_circ_0001874 binds to Igf2bp2 to interact with Ucp1, up-regulating Ucp1 translation and increasing thermogenesis to decrease lipid accumulation. In conclusion, our data highlight a physiological role for circRNA in lipid metabolism reprogramming and suggest mmu_circ_0001874/miR-24-3p/Igf2/PI3K-AKT-mTOR and mmu_circ_0001874/Igf2bp2/Ucp1 axis may represent a potential mechanism for controlling lipid accumulation in obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The sequencing data are available on NCBI database at Sequence Read Archive (SRA). The transcriptome sequencing data: SUB12222924.

References

  1. Ma Y, Li J, Ju Z, Huang W, Wang Z, Yang L, Ding L (2021) Danning tablets alleviate high fat diet-induced obesity and fatty liver in mice via modulating SREBP pathway. J Ethnopharmacol 279:114320

    CAS  PubMed  Google Scholar 

  2. Ramos-Arellano L, Matia-Garcia I, Marino-Ortega L, Castro-Alarcón N, Muñoz-Valle J, Salgado-Goytia L, Salgado-Bernabé A, Parra-Rojas I (2020) Obesity, dyslipidemia, and high blood pressure are associated with cardiovascular risk, determined using high-sensitivity C-reactive protein concentration, in young adults. J Int Med Res 48:300060520980596

    CAS  PubMed  Google Scholar 

  3. Brown J, Yang S, Mire E, Wu X, Miele L, Ochoa A, Zabaleta J, Katzmarzyk P (2021) Obesity and cancer risk in white and black adults: a prospective cohort study. Obesity 29:960–965

    PubMed  Google Scholar 

  4. Cooper C, Mandel E (2020) Recognizing and treating child overweight and obesity. JAAPA 33:47–50

    PubMed  Google Scholar 

  5. Llewellyn C, Wardle J (2015) Behavioral susceptibility to obesity: Gene–environment interplay in the development of weight. Physiol Behav 152:494–501

    CAS  PubMed  Google Scholar 

  6. Swinburn B, Sacks G, Hall K, McPherson K, Finegood D, Moodie M, Gortmaker S (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378:804–818

    PubMed  Google Scholar 

  7. Yu G, Yang Z, Peng T, Lv Y (2021) Circular RNAs: Rising stars in lipid metabolism and lipid disorders. J Cell Physiol 236:4797–4806

    CAS  PubMed  Google Scholar 

  8. Jeyakumar S, Yasmeen R, Reichert B, Ziouzenkova O (2013) Metabolism of vitamin A in white adipose tissue and obesity. Carotenoids and vitamin A in translational medicine. CRC Press, Boca Raton, pp 23–54

    Google Scholar 

  9. Zhu Q, Scherer P (2017) Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol 14:105–120

    PubMed  Google Scholar 

  10. Maury E, Brichard S (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314:1–16

    CAS  PubMed  Google Scholar 

  11. Buechler C, Wanninger J, Neumeier M (2011) Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol 17:2801–2811

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Chen X, Li HD, Bu FT, Li XF, Li J (2020) Circular RNA circFBXW4 suppresses hepatic fibrosis via targeting the miR-18b-3p/FBXW7 axis. Theranostics 10:4851–4870

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Arcinas C, Tan W, Fang W, Desai T, Teh D, Degirmenci U, Xu D, Foo R, Sun L (2019) Adipose circular RNAs exhibit dynamic regulation in obesity and functional role in adipogenesis. Nat Metab 1:688–703

    CAS  PubMed  Google Scholar 

  14. Shi C, Huang F, Gu X, Zhang M, Wen J, Wang X, You L, Cui X, Ji C, Guo X (2016) Adipogenic miRNA and Meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget 7:40830–40845

    PubMed Central  PubMed  Google Scholar 

  15. Zhao E, Keller M, Rabaglia M, Oler A, Stapleton D, Schueler K, Neto E, Moon J, Wang P, Wang I et al (2009) Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome 20:476–485

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Jiang R, Li H, Yang J, Shen X, Song C, Yang Z, Wang X, Huang Y, Lan X, Lei C (2020) circRNA profiling reveals an abundant circFUT10 that promotes adipocyte proliferation and inhibits adipocyte differentiation via sponging let-7. Mol Ther Nucl Acids 20:491–501

    CAS  Google Scholar 

  17. Ding Z, Sun D, Han J, Shen L, Yang F, Sah S, Sui X, Wu G (2021) Novel noncoding RNA CircPTK2 regulates lipolysis and adipogenesis in cachexia. Mol Metab 53:101310

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Liu Y, Liu H, Li Y, Mao R, Zhang T (2020) Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis. Theranostics 10:4705–4719

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Arcinas C, Tan W, Fang W, Desai TP, Sun L (2019) Adipose circular RNAs exhibit dynamic regulation in obesity and functional role in adipogenesis. Nat Metab 1:688–703

    CAS  PubMed  Google Scholar 

  20. Chen Q, Liu M, Luo Y, Yu H, He Q (2020) Maternal obesity alters circRNA expression and the potential role of mmu_circRNA_0000660 via sponging miR_693 in offspring liver at weaning age. Gene 731:144354

    CAS  PubMed  Google Scholar 

  21. Li P, Shan K, Liu Y, Zhang Y, Xu L, Xu L (2018) CircScd1 promotes fatty liver disease via the janus kinase 2/signal transducer and activator of transcription 5 pathway. Dig Dis Sci 64:113–122

    PubMed  Google Scholar 

  22. Li J, Qi J, Tang Y, Liu H, Zhou K, Dai Z, Yuan L, Sun C (2021) A nanodrug system overexpressed circRNA_0001805 alleviates nonalcoholic fatty liver disease via miR-106a-5p/miR-320a and ABCA1/CPT1 axis. J Nanobiotechnol 19:363

    CAS  Google Scholar 

  23. Yang G, Wu M, Liu X, Wang F, Li M, An X, Bai F, Lei C, Dang R (2022) MiR-24-3p conservatively regulates muscle cell proliferation and apoptosis by targeting common gene CAMK2B in rat and cattle. Animals (Basel) 12:505

    PubMed  Google Scholar 

  24. Gao Z, Zhou L, Hua S, Wu H, Luo L, Li L, Wang S, Liu Y, Zhou Z, Chen X (2020) miR-24-3p promotes colon cancer progression by targeting ING1. Signal Transduct Targ Ther 5:171

    CAS  Google Scholar 

  25. Liu L, Liu L, Lu Y, Zhang T, Zhao W (2021) Serum aberrant expression of miR-24-3p and its diagnostic value in Alzheimer’s disease. Biomark Med 15:1499–1507

    PubMed  Google Scholar 

  26. Guo L, Chao X, Huang W, Li Z, Luan K, Ye M, Zhang S, Liu M, Li H, Luo W et al (2021) Whole transcriptome analysis reveals a potential regulatory mechanism of LncRNA-FNIP2/miR-24-3p/FNIP2 axis in chicken adipogenesis. Front Cell Dev Biol 9:653798

    PubMed Central  PubMed  Google Scholar 

  27. Liu H, Wang X, Wang Z, Li L (2020) Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11. J Cell Physiol 235:4520–4529

    CAS  PubMed  Google Scholar 

  28. Zhang J, Liu L, Xue Y, Ma Y, Liu X, Li Z, Li Z, Liu Y (2018) Endothelial monocyte-activating polypeptide-II induces BNIP3-mediated mitophagy to enhance temozolomide cytotoxicity of glioma stem cells via down-regulating MiR-24-3p. Front Mol Neurosci 11:92

    PubMed Central  PubMed  Google Scholar 

  29. Yerlikaya FH (2019) Aberrant expression of miRNA profiles in high-fat and high-sucrose fed rats. Clin Nutr Exp 27:1–8

    Google Scholar 

  30. Zhang D, Lu K, Dong Z, Jiang G, Xu W, Liu W (2014) The effect of exposure to a high-fat diet on MicroRNA expression in the liver of blunt snout bream (Megalobrama amblycephala). PLoS ONE 9:e96132

    PubMed Central  PubMed  Google Scholar 

  31. Mentzel C, Anthon C, Jacobsen M, Karlskov-Mortensen P, Bruun C, Jørgensen C, Gorodkin J, Cirera S, Fredholm M (2015) Gender and obesity specific MicroRNA expression in adipose tissue from lean and obese pigs. PLoS ONE 10:e0131650

    PubMed Central  PubMed  Google Scholar 

  32. Luo G, Hu S, Lai T, Wang J, Wang L, Lai S (2020) MiR-9-5p promotes rabbit preadipocyte differentiation by suppressing leptin gene expression. Lipids Health Dis 19:126

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Takahashi K, Yamaguchi S, Shimoyama T, Seki H, Miyokawa K, Katsuta H, Tanaka T, Yoshimoto K, Ohno H, Nagamatsu S et al (2008) JNK- and IkappaB-dependent pathways regulate MCP-1 but not adiponectin release from artificially hypertrophied 3T3-L1 adipocytes preloaded with palmitate in vitro. Am J Physiol Endocrinol Metab 294:E898-909

    CAS  PubMed  Google Scholar 

  34. Fang W, Jia Y, Wang P, Yang Q, Chang ZJ (2017) Identification and profiling of Cyprinus carpio microRNAs during ovary differentiation by deep sequencing. BMC Genom 18:333

    Google Scholar 

  35. Pitto L, Ripoli A, Cremisi F, Rainaldi G (2008) microRNA (interference) networks are embedded in the gene regulatory networks. Cell Cycle 7:2458–2461

    CAS  PubMed  Google Scholar 

  36. Shao J, Wang J, Li Y, Elzo M, Tang T, Lai T, Ma Y, Gan M, Wang L, Jia X et al (2020) Growth, behavioural, serum biochemical and morphological changes in female rabbits fed high-fat diet. J Anim Physiol Anim Nutr (Berl) 105:345–353

    PubMed  Google Scholar 

  37. Li J, Liu S, Zhou H, Qu L, Yang J (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucl Acids Res 42:92–97

    Google Scholar 

  38. Kim YJ, Si YC, Yun CH, Lee TR, Sang HK (2020) Transcriptional activation of Cidec by PPARγ2 in adipocyte. Biochem Biophys Res Commun 377:297–302

    Google Scholar 

  39. Wen J, Friedman J (2012) miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Invest 122:2773–2776

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Yu G, Yang Z, Peng T, Lv Y (2020) Circular RNAs: rising stars in lipid metabolism and lipid disorders. J Cell Physiol 236:4797–4806

    PubMed  Google Scholar 

  41. Pan X, Fang Y, Li X, Yang Y, Shen H (2020) RBPsuite: RNA-protein binding sites prediction suite based on deep learning. BMC Genom 21:884

    CAS  Google Scholar 

  42. Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia G (2013) catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29:2928–2930

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano MJ, Jungkamp A, Munschauer M et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ning D, Zhao L, Wrighting D, Krmer D, Majithia A, Wang Y, Cracan V, Borges-Rivera D, Mootha V, Nahrendorf M (2015) IGF2BP2/IMP2-deficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochondrial proteins. Cell Metab 21:609–621

    Google Scholar 

  45. Farmer S (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Kirkland J, Hollenberg C, Kindler S, Gillon W (1994) Effects of age and anatomic site on preadipocyte number in rat fat depots. J Gerontol 49:31–35

    Google Scholar 

  47. Xi F, Wei C, Xu Y, Ma L, He Y, Shi X, Yang G, Yu T (1816) MicroRNA-214-3p targeting Ctnnb1 promotes 3T3-L1 preadipocyte differentiation by interfering with the Wnt/β-catenin signaling pathway. Int J Mol Sci 2019:20

    Google Scholar 

  48. Li Q, Wang N, Wei H, Li C, Wu J, Yang G (2016) miR-24-3p regulates progression of gastric mucosal lesions and suppresses proliferation and invasiveness of N87 via peroxiredoxin 6. Dig Dis Sci 61:3486–3497

    PubMed Central  PubMed  Google Scholar 

  49. Liu H, Wang X, Wang Z, Li L (2019) Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11. J Cell Physiol 235:4520–4529

    PubMed  Google Scholar 

  50. Cui X, Huang X, Huang M, Zhou S, Le G, Yu W, Duan M, Jiang B, Zeng J, Zhou J et al (2021) miR-24-3p obstructs the proliferation and migration of HSFs after thermal injury by targeting PPAR-β and positively regulated by NF-κB. Exp Dermatol 31:841–853

    Google Scholar 

  51. Li Z, Sun Y, Cao S, Zhang J, Wei J (2019) Downregulation of miR-24-3p promotes osteogenic differentiation of human periodontal ligament stem cells by targeting SMAD family member 5. J Cell Physiol 234:7411–7419

    CAS  PubMed  Google Scholar 

  52. Bai X, Zhang P, Liu Y, Liu H, Lv L, Zhou Y (2021) TRIB3 promotes osteogenic differentiation of human adipose-derived mesenchymal stem cells levelled by post-transcriptional regulation of miR-24-3p. Chin J Dent Res 24:235–249

    PubMed  Google Scholar 

  53. Lin Z, Tang Y, Li Z, Li J, Yu C, Yang C, Liu L, Wang Y, Liu Y (2022) miR-24-3p Dominates the proliferation and differentiation of chicken intramuscular preadipocytes by blocking ANXA6 expression. Genes (Basel) 13:635

    CAS  PubMed  Google Scholar 

  54. Yu Y, Yang T, Ding Z, Cao Y (2022) Circ_0026579 alleviates LPS-induced WI-38 cells inflammation injury in infantile pneumonia. Innate Immun 28:37–48

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Sélénou C, Brioude F, Giabicani E, Sobrier M, Netchine I (1886) IGF2: development, genetic and epigenetic abnormalities. Cells 2022:11

    Google Scholar 

  56. Halmos T, Suba I (2019) The physiological role of growth hormone and insulin-like growth factors. Orv Hetil 160:1774–1783

    PubMed  Google Scholar 

  57. Qiao X, Wang L, Liu M, Tian Y, Chen T (2019) MiR-210-3p attenuates lipid accumulation and inflammation in atherosclerosis by repressing IGF2. Biosci Biotechnol Biochem 84:321–329

    PubMed  Google Scholar 

  58. Kessler S, Laggai S, Van Wonterg E, Gemperlein K, Müller R, Haybaeck J, Vandenbroucke R, Ogris M, Libert C, Kiemer A (2016) Transient hepatic overexpression of insulin-like growth factor 2 induces free cholesterol and lipid droplet formation. Front Physiol 7:147

    PubMed Central  PubMed  Google Scholar 

  59. Chao W, D’Amore P (2008) IGF2: Epigenetic regulation and role in development and disease. Cytokine Growth Fact Rev 19:111–120

    CAS  Google Scholar 

  60. Bian Q, Chen B, Weng B, Chu D, Tang X, Yan S, Yin Y, Ran M (2021) circBTBD7 promotes immature porcine sertoli cell growth through modulating miR-24-3p/MAPK7 axis to inactivate p38 MAPK signaling pathway. Int J Mol Sci 22:9385

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Zhang L, Wang Z, Lan D, Zhao J, Wang L, Shao X, Wang D, Wu K, Sun M, Huang X et al (2022) MicroRNA-24-3p alleviates cardiac fibrosis by suppressing cardiac fibroblasts mitophagy via downregulating PHB2. Pharmacol Res 177:106124

    CAS  PubMed  Google Scholar 

  62. Zhang H, Xue S, Feng Y, Shen J, Zhao J (2020) MicroRNA-24-3p inhibition prevents cell growth of vascular smooth muscle cells by targeting Bcl-2-like protein 11. Exp Ther Med 19:2467–2474

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Chen Z, Liu M, Zhang W, Deng M, Zhou Y, Li Y (2020) miR-24-3p induces human intervertebral disc degeneration by targeting insulin-like growth factor binding protein 5 and the ERK signaling pathway. Life Sci 243:117288

    CAS  PubMed  Google Scholar 

  64. Liu M, Xie S, Liu W, Li J, Zhang H (2019) Mechanism of SEMA3G knockdown-mediated attenuation of high-fat diet-induced obesity. J Endocrinol 244:223–236

    Google Scholar 

  65. Lagathu C, Christodoulides C, Virtue S, Cawthorn W, Franzin C, Kimber W, Nora E, Campbell M, Medina-Gomez G, Cheyette B et al (2009) Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network. Diabetes 58:609–619

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Zhou L, Xu L, Ye J, Li D, Wang W, Li X, Wu L, Wang H, Guan F, Li P (2012) Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology 56:95–107

    CAS  PubMed  Google Scholar 

  67. Tybl E, Shi F, Kessler S, Tierling S, Walter J, Bohle R, Wieland S, Zhang J, Tan E, Kiemer A (2011) Overexpression of the IGF2-mRNA binding protein p62 in transgenic mice induces a steatotic phenotype. J Hepatol 54:994–1001

    CAS  PubMed  Google Scholar 

  68. Regué L, Minichiello L, Avruch J, Dai N (2019) Liver-specific deletion of IGF2 mRNA binding protein-2/IMP2 reduces hepatic fatty acid oxidation and increases hepatic triglyceride accumulation. J Biol Chem 294:11944–11951

    PubMed Central  PubMed  Google Scholar 

  69. Enerbäck S, Jacobsson A, Simpson E, Guerra C, Yamashita H, Harper M, Kozak L (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms. Ting Pan (WestChina-Frontier PharmaTech Co., Ltd, Chengdu, China) for the provision of hepatocytes.

Funding

The National Modern Agricultural Industrial Technology System (CARS-43-A-2) and the Key Research and Development Program of Sichuan Province (2021YFYZ0033) provided funding for our research.

Author information

Authors and Affiliations

Authors

Contributions

The project was planned and designed by JS, JW, XJ, and SL. Data were gathered and research was carried out by JS, MW, ZL, GJ, and TT. JS and AZ wrote this paper.

Corresponding author

Correspondence to Songjia Lai.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Consent for publication

Not applicable.

Ethics approval and consent to participate

The experimental procedures were approved by the Animal Care and Use Committee from the College of Animal Science and Technology, Sichuan Agricultural University, China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Wang, M., Zhang, A. et al. Interference of a mammalian circRNA regulates lipid metabolism reprogramming by targeting miR-24-3p/Igf2/PI3K-AKT-mTOR and Igf2bp2/Ucp1 axis. Cell. Mol. Life Sci. 80, 252 (2023). https://doi.org/10.1007/s00018-023-04899-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04899-1

Keywords

Navigation