Skip to main content
Log in

Adipocyte Rnf20 ablation increases the fast-twitch fibers of skeletal muscle via lysophosphatidylcholine 16:0

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Both adipose tissue and skeletal muscle are highly dynamic tissues and interact at the metabolic and hormonal levels in response to internal and external stress, and they coordinate in maintaining whole-body metabolic homeostasis. In our previous study, we revealed that adipocyte-specific Rnf20 knockout mice (ASKO mice) exhibited lower fat mass but higher lean mass, providing a good model for investigating the adipose-muscle crosstalk and exploring the effect of the adipocyte Rnf20 gene on the physiology and metabolism of skeletal muscle. Here, we confirmed that ASKO mice exhibited the significantly increased body weight and gastrocnemius muscle weight. Fiber-type switching in the soleus muscle of ASKO mice was observed, as evidenced by the increased number of fast-twitch fibers and decreased number of slow-twitch fibers. Serum metabolites with significant alteration in abundance were identified by metabolomic analysis and the elevated lysophosphatidylcholine 16:0 [LysoPC (16:0)] was observed in ASKO mice. In addition, lipidome analysis of gonadal white adipose tissue revealed a significant increase in LysoPCs and LysoPC (16:0) in ASKO mice. Furthermore, knockdown of Rnf20 gene in 3T3-L1 cells significantly increased the secretion of LysoPC, suggesting that LysoPC might be a critical metabolite in the adipose-muscle crosstalk of ASKO mice. Furthermore, in vitro study demonstrated that LysoPC (16:0) could induce the expression of fast-twitch muscle fibers related genes in differentiated C2C12 cells, indicating its potential role in adipose-muscle crosstalk. Taken together, these findings not only expand our understanding of the biological functions of Rnf20 gene in systemic lipid metabolism, but also provide insight into adipose tissue dysfunction-induced physiological alterations in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Abbreviations

RNF20:

Ring finger 20

WT mice:

Wild-type mice

ASKO mice:

Adipocyte-specific Rnf20 knockout mice

ERK1/2:

Extracellular regulated protein kinase 1/2

GLUT4:

Glucose transporter type 4

IRS-1:

Insulin receptor substrate-1

SREBP1c:

Sterol regulatory element binding protein 1c

NCoR1:

Nuclear receptor corepressor 1

FFA:

Free fatty acid

LPA:

Lysophosphatidic acid

gWAT:

Gonadal white adipose tissue

PBST:

Phosphate buffered solution

BSA:

Bovine serum albumin

CSA:

Cross-sectional area

TAG:

Triacylglycerol

DAG:

Diacylglycerol

CE:

Cholesteryl esters

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PS:

Phosphatidylserine

LysoPC:

Lysophosphatidylcholine

LysoPE:

Lysophosphatidylethanolamine

LysoPS:

Lysophosphatidylserine

SM:

Sphingomyelin

qRT-PCR:

Quantitative reverse transcription PCR

FBS:

Fetal bovine serum

PCA:

Principal component analysis

FC:

Fold change

PUFA:

Polyunsaturated fatty acids

KEGG:

Kyoto Encyclopedia of Genes and Genomes

SCD-1:

Stearoyl-CoA desaturase-1

PLA2:

Phospholipase A2

Chk:

Choline kinase

Ctα:

Phosphocholine cytidylyltransferase α

Chpt:

Choline phosphotransferase

References

  1. Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F, Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez PC, Rotini A, Taglietti T (2021) Perspectives on skeletal muscle stem cells. Nat Commun 121:692. https://doi.org/10.1038/s41467-020-20760-6

    Article  CAS  Google Scholar 

  2. Blaauw B, Schiaffino S, Reggiani C (2013) Mechanisms modulating skeletal muscle phenotype. Compr Physiol 34:1645–1687. https://doi.org/10.1002/cphy.c130009

    Article  Google Scholar 

  3. Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 210:e348. https://doi.org/10.1371/journal.pbio.0020348

    Article  CAS  Google Scholar 

  4. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 914:1447–1531. https://doi.org/10.1152/physrev.00031.2010

    Article  CAS  Google Scholar 

  5. Wang T, Xu YQ, Yuan YX, Xu PW, Zhang C, Li F, Wang LN, Yin C, Zhang L, Cai XC, Zhu CJ, Xu JR, Liang BQ, Schaul S, Xie PP, Yue D, Liao ZR, Yu LL, Luo L, Zhou G, Yang JP, He ZH, Du M, Zhou YP, Deng BC, Wang SB, Gao P, Zhu XT, Xi QY, Zhang YL, Shu G, Jiang QY (2019) Succinate induces skeletal muscle fiber remodeling via Suncr1 signaling. EMBO Rep 209:e47892. https://doi.org/10.15252/embr.201947892

    Article  CAS  Google Scholar 

  6. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 88:457–465. https://doi.org/10.1038/nrendo.2012.49

    Article  CAS  Google Scholar 

  7. Ukropec J, Ukropcova B, Kurdiova T, Gasperikova D, Klimes I (2008) Adipose tissue and skeletal muscle plasticity modulates metabolic health. Arch Physiol Biochem 1145:357–368. https://doi.org/10.1080/13813450802535812

    Article  CAS  Google Scholar 

  8. Fan HQ, Gu N, Liu F, Fei L, Pan XQ, Guo M, Chen RH, Guo XR (2007) Prolonged exposure to resistin inhibits glucose uptake in rat skeletal muscles. Acta Pharmacol Sin 283:410–416. https://doi.org/10.1111/j.1745-7254.2007.00523.x

    Article  CAS  Google Scholar 

  9. Muoio DM, Dohm GL, Fiedorek FT Jr, Tapscott EB, Coleman RA (1997) Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 468:1360–1363. https://doi.org/10.2337/diab.46.8.1360

    Article  Google Scholar 

  10. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating amp-activated protein kinase. Nat Med 811:1288–1295. https://doi.org/10.1038/nm788

    Article  CAS  Google Scholar 

  11. Fong Y, Moldawer LL, Marano M, Wei H, Barber A, Manogue K, Tracey KJ, Kuo G, Fischman DA, Cerami A et al (1989) Cachectin/Tnf or Il-1 alpha induces cachexia with redistribution of body proteins. Am J Physiol 2563(Pt 2):R659–R665. https://doi.org/10.1152/ajpregu.1989.256.3.R659

    Article  Google Scholar 

  12. Funcke JB, Scherer PE (2019) Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 6010:1648–1684. https://doi.org/10.1194/jlr.R094060

    Article  Google Scholar 

  13. Zhou Q, Du J, Hu Z, Walsh K, Wang XH (2007) Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and fatty acids. Endocrinology 14812:5696–5705. https://doi.org/10.1210/en.2007-0183

    Article  CAS  Google Scholar 

  14. Rancoule C, Attane C, Gres S, Fournel A, Dusaulcy R, Bertrand C, Vinel C, Treguer K, Prentki M, Valet P, Saulnier-Blache JS (2013) Lysophosphatidic acid impairs glucose homeostasis and inhibits insulin secretion in high-fat diet obese mice. Diabetologia 566:1394–1402. https://doi.org/10.1007/s00125-013-2891-3

    Article  CAS  Google Scholar 

  15. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J (2006) Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 559:2579–2587. https://doi.org/10.2337/db06-0330

    Article  CAS  Google Scholar 

  16. Vantyghem MC, Pigny P, Maurage CA, Rouaix-Emery N, Stojkovic T, Cuisset JM, Millaire A, Lascols O, Vermersch P, Wemeau JL, Capeau J, Vigouroux C (2004) Patients with familial partial lipodystrophy of the dunnigan type due to a Lmna R482w mutation show muscular and cardiac abnormalities. J Clin Endocrinol Metab 8911:5337–5346. https://doi.org/10.1210/jc.2003-031658

    Article  CAS  Google Scholar 

  17. Sellers RS, Mahmood SR, Perumal GS, Macaluso FP, Kurland IJ (2019) Phenotypic modulation of skeletal muscle fibers in Lpin1-deficient lipodystrophic ( Fld) mice. Vet Pathol 562:322–331. https://doi.org/10.1177/0300985818809126

    Article  CAS  Google Scholar 

  18. Xu W, Zhou H, Xuan H, Saha P, Wang G, Chen W (2019) Novel metabolic disorders in skeletal muscle of lipodystrophic Bscl2/seipin deficient mice. Mol Cell Endocrinol 482:1–10. https://doi.org/10.1016/j.mce.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Fuchs G, Oren M (2014) Writing and reading H2b monoubiquitylation. Biochim Biophys Acta 18398:694–701. https://doi.org/10.1016/j.bbagrm.2014.01.002

    Article  CAS  Google Scholar 

  20. Ren P, Sheng Z, Wang Y, Yi X, Zhou Q, Zhou J, Xiang S, Hu X, Zhang J (2014) Rnf20 promotes the polyubiquitination and proteasome-dependent degradation of Ap-2alpha protein. Acta Biochim Biophys Sin (Shanghai) 462:136–140. https://doi.org/10.1093/abbs/gmt136

    Article  CAS  Google Scholar 

  21. Lee JH, Jeon YG, Lee KH, Lee HW, Park J, Jang H, Kang M, Lee HS, Cho HJ, Nam DH, Kwak C, Kim JB (2017) Rnf20 suppresses tumorigenesis by inhibiting the Srebp1c-Pttg1 axis in kidney cancer. Mol Cell Biol. https://doi.org/10.1128/MCB.00265-17

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jeon YG, Lee JH, Ji Y, Sohn JH, Lee D, Kim DW, Yoon SG, Shin KC, Park J, Seong JK, Cho JY, Choe SS, Kim JB (2020) Rnf20 functions as a transcriptional coactivator for ppargamma by promoting Ncor1 degradation in adipocytes. Diabetes 691:20–34. https://doi.org/10.2337/db19-0508

    Article  CAS  Google Scholar 

  23. Zhao Y, Pan J, Cao C, Liang X, Yang S, Liu L, Tao C, Zhao J, Wang Y (2021) Rnf20 affects porcine adipocyte differentiation via regulation of mitotic clonal expansion. Cell Prolif 5412:e13131. https://doi.org/10.1111/cpr.13131

    Article  CAS  Google Scholar 

  24. Liang X, Tao C, Pan J, Zhang L, Liu L, Zhao Y, Fan Y, Cao C, Liu J, Zhang J, Lam SM, Shui G, Jin W, Li W, Zhao J, Li K, Wang Y (2021) Rnf20 deficiency in adipocyte impairs adipose tissue development and thermogenesis. Protein Cell 126:475–492. https://doi.org/10.1007/s13238-020-00770-2

    Article  CAS  Google Scholar 

  25. Pan J, Tao C, Cao C, Zheng Q, Lam SM, Shui G, Liu X, Li K, Zhao J, Wang Y (2019) Adipose lipidomics and Rna-Seq analysis revealed the enhanced mitochondrial function in Ucp1 knock-in pigs. Biochim Biophys Acta Mol Cell Biol Lipids 186410:1375–1383. https://doi.org/10.1016/j.bbalip.2019.06.017

    Article  CAS  Google Scholar 

  26. Pereyra AS, Lin CT, Sanchez DM, Laskin J, Spangenburg EE, Neufer PD, Fisher-Wellman K, Ellis JM (2022) Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation. Mol Metab. 59:101456. https://doi.org/10.1016/j.molmet.2022.101456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang L, Zhou M (2023) Structure of a eukaryotic cholinephosphotransferase-1 reveals mechanisms of substrate recognition and catalysis. Nat Commun 141:2753. https://doi.org/10.1038/s41467-023-38003-9

    Article  CAS  Google Scholar 

  28. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/Mtor pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 311:1014–1019. https://doi.org/10.1038/ncb1101-1014

    Article  CAS  Google Scholar 

  29. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of Igf-1-induced skeletal myotube hypertrophy by Pi(3)K/Akt/Mtor and Pi(3)K/Akt/Gsk3 pathways. Nat Cell Biol 311:1009–1013. https://doi.org/10.1038/ncb1101-1009

    Article  CAS  Google Scholar 

  30. Ryu YC, Choi YM, Lee SH, Shin HG, Choe JH, Kim JM, Hong KC, Kim BC (2008) Comparing the histochemical characteristics and meat quality traits of different pig breeds. Meat Sci 802:363–369. https://doi.org/10.1016/j.meatsci.2007.12.020

    Article  CAS  Google Scholar 

  31. Shi H, Scheffler JM, Pleitner JM, Zeng C, Park S, Hannon KM, Grant AL, Gerrard DE (2008) Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling. FASEB J 228:2990–3000. https://doi.org/10.1096/fj.07-097600

    Article  CAS  Google Scholar 

  32. Koh HJ, Brandauer J, Goodyear LJ (2008) Lkb1 and Ampk and the regulation of skeletal muscle metabolism. Curr Opin Clin Nutr Metab Care 113:227–232. https://doi.org/10.1097/MCO.0b013e3282fb7b76

    Article  CAS  Google Scholar 

  33. Frayn KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 459:1201–1210. https://doi.org/10.1007/s00125-002-0873-y

    Article  CAS  Google Scholar 

  34. D’Souza K, Nzirorera C, Cowie AM, Varghese GP, Trivedi P, Eichmann TO, Biswas D, Touaibia M, Morris AJ, Aidinis V, Kane DA, Pulinilkunnil T, Kienesberger PC (2018) Autotaxin-Lpa signaling contributes to obesity-induced insulin resistance in muscle and impairs mitochondrial metabolism. J Lipid Res 5910:1805–1817. https://doi.org/10.1194/jlr.M082008

    Article  Google Scholar 

  35. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 1346:933–944. https://doi.org/10.1016/j.cell.2008.07.048

    Article  CAS  Google Scholar 

  36. Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL, Takahashi H, Hirshman MF, Schlein C, Lee A, Baer LA, May FJ, Gao F, Narain NR, Chen EY, Kiebish MA, Cypess AM, Bluher M, Goodyear LJ, Hotamisligil GS, Stanford KI, Tseng YH (2017) The cold-induced lipokine 12,13-dihome promotes fatty acid transport into brown adipose tissue. Nat Med 235:631–637. https://doi.org/10.1038/nm.4297

    Article  CAS  Google Scholar 

  37. Lin H, Long JZ, Roche AM, Svensson KJ, Dou FY, Chang MR, Strutzenberg T, Ruiz C, Cameron MD, Novick SJ, Berdan CA, Louie SM, Nomura DK, Spiegelman BM, Griffin PR, Kamenecka TM (2018) Discovery of hydrolysis-resistant isoindoline N-acyl amino acid analogues that stimulate mitochondrial respiration. J Med Chem 617:3224–3230. https://doi.org/10.1021/acs.jmedchem.8b00029

    Article  CAS  Google Scholar 

  38. Schafer N, Yu Z, Wagener A, Millrose MK, Reissmann M, Bortfeldt R, Dieterich C, Adamski J, Wang-Sattler R, Illig T, Brockmann GA (2014) Changes in metabolite profiles caused by genetically determined obesity in mice. Metabolomics 103:461–472. https://doi.org/10.1007/s11306-013-0590-1

    Article  CAS  Google Scholar 

  39. Ferrara PJ, Verkerke ARP, Maschek JA, Shahtout JL, Siripoksup P, Eshima H, Johnson JM, Petrocelli JJ, Mahmassani ZS, Green TD, McClung JM, Cox JE, Drummond MJ, Funai K (2021) Low lysophosphatidylcholine induces skeletal muscle myopathy that is aggravated by high-fat diet feeding. FASEB J 3510:e21867. https://doi.org/10.1096/fj.202101104R

    Article  Google Scholar 

  40. Boon MR, Bakker LEH, Prehn C, Adamski J, Vosselman MJ, Jazet IM, Arias-Bouda LMP, van Lichtenbelt WDM, van Dijk KW, Rensen PCN, Mook-Kanamori DO (2017) Lysopc-Acyl C16:0 is associated with brown adipose tissue activity in men. Metabolomics 135:48. https://doi.org/10.1007/s11306-017-1185-z

    Article  CAS  Google Scholar 

  41. Sekas G, Patton GM, Lincoln EC, Robins SJ (1985) Origin of plasma lysophosphatidylcholine: evidence for direct hepatic secretion in the rat. J Lab Clin Med 1052:190–194

    Google Scholar 

  42. Mehedint MG, Zeisel SH (2013) Choline’s role in maintaining liver function: new evidence for epigenetic mechanisms. Curr Opin Clin Nutr Metab Care 163:339–345. https://doi.org/10.1097/MCO.0b013e3283600d46

    Article  CAS  Google Scholar 

  43. Liu L, Yu S, Khan RS, Ables GP, Bharadwaj KG, Hu Y, Huggins LA, Eriksson JW, Buckett LK, Turnbull AV, Ginsberg HN, Blaner WS, Huang LS, Goldberg IJ (2011) Dgat1 deficiency decreases Ppar expression and does not lead to lipotoxicity in cardiac and skeletal muscle. J Lipid Res 524:732–744. https://doi.org/10.1194/jlr.M011395

    Article  CAS  Google Scholar 

  44. Schlegel C, Lapierre LA, Weis VG, Williams JA, Kaji I, Pinzon-Guzman C, Prasad N, Boone B, Jones A, Correa H, Levy SE, Han X, Wang M, Thomsen K, Acra S, Goldenring JR (2018) Reversible deficits in apical transporter trafficking associated with deficiency in diacylglycerol acyltransferase. Traffic 1911:879–892. https://doi.org/10.1111/tra.12608

    Article  CAS  Google Scholar 

  45. Hall AM, Soufi N, Chambers KT, Chen Z, Schweitzer GG, McCommis KS, Erion DM, Graham MJ, Su X, Finck BN (2014) Abrogating monoacylglycerol acyltransferase activity in liver improves glucose tolerance and hepatic insulin signaling in obese mice. Diabetes 637:2284–2296. https://doi.org/10.2337/db13-1502

    Article  Google Scholar 

  46. Watt MJ (2009) Storing up trouble: does accumulation of intramyocellular triglyceride protect skeletal muscle from insulin resistance? Clin Exp Pharmacol Physiol 361:5–11. https://doi.org/10.1111/j.1440-1681.2008.05075.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our lab members for critical reading of the manuscript and helpful discussions.

Funding

This work was supported by Lingnan Modern Agriculture Project (NT2021005), the National Key R & D Program of China (2020YFA0509500 and 2021YFA0805903), National Natural Science Fundation for Distinguished Young Scholars (32025034 and 31925036) and the Agricultural Science and Technology Innovation Program (ASTIP).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The project was designed by YW, JZ and NY. Material preparation, data collection and analysis were performed by YZ, CC, JP, SY, TW and CT. Lipid measurement were performed by GS and SML. The first draft of the manuscript was written by YZ and YW, and all authors commented on previous versions of manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Jianguo Zhao or Yanfang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in line with the principles of Animal Research Panel of the Committee on Research Practice. Approval was granted by Animal Ethics Committee of the Institute of Animal Science (No. IOZ20190077).

Consent for publication

Human experiments are not involved in this article.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 7716 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, C., Pan, J. et al. Adipocyte Rnf20 ablation increases the fast-twitch fibers of skeletal muscle via lysophosphatidylcholine 16:0. Cell. Mol. Life Sci. 80, 243 (2023). https://doi.org/10.1007/s00018-023-04896-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04896-4

Keywords

Navigation