Skip to main content
Log in

Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice

Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood. Here, we show that FMT (FRIENDLY MITOCHONDRIA) from Arabidopsis thaliana, a highly conserved homolog of the mammalian CLUH (CLUSTERED MITOCHONDRIA) gene family encoding mitochondrial proteins associated with developmental alterations and adult physiological and pathological behaviors, affects whole plant morphology and development under both stressed and normal growth conditions. FMT was found to regulate mitochondrial morphology and dynamics, germination, and flowering time. It also affects leaf expansion growth, salt stress responses and hyponastic behavior, including changes in speed of hyponastic movements. Strikingly, Cluh± heterozygous knockout mice also displayed altered locomotive movements, traveling for shorter distances and had slower average and maximum speeds in the open field test. These observations indicate that homologous mitochondrial genes may play similar roles and affect homologous functions in both plants and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Apelt F, Breuer D, Nikoloski Z, Stitt M, Kragler F (2015) Phytotyping(4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth. Plant J 82:693–706

    Article  CAS  PubMed  Google Scholar 

  2. Apelt F, Breuer D, Olas JJ, Annunziata MG, Flis A, Nikoloski Z, Kragler F, Stitt M (2017) Circadian, carbon, and light control of expansion growth and leaf movement. Plant Physiol 174:1949–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aung K, Hu J (2012) Differential roles of Arabidopsis dynamin-related proteins DRP3A, DRP3B, and DRP5B in organelle division. J Integr Plant Biol 54:921–931

    CAS  PubMed  Google Scholar 

  4. Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnaune-Pelloquin L, Davezac N, Mils V, Miquel MC et al (2016) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 90:3–19

    Article  CAS  PubMed  Google Scholar 

  5. Burte F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11:11–24

    Article  CAS  PubMed  Google Scholar 

  6. Busi MV, Maliandi MV, Valdez H, Clemente M, Zabaleta EJ, Araya A, Gomez-Casati DF (2006) Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe–S proteins and induces oxidative stress. Plant J 48:873–882

    Article  CAS  PubMed  Google Scholar 

  7. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18:R169-176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng A, Hou Y, Mattson MP (2010) Mitochondria and neuroplasticity. ASN Neuro 2:e00045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cox RT, Spradling AC (2009) Clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin. Dis Model Mech 2:490–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deacon RM (2006) Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc 1:122

    Article  CAS  PubMed  Google Scholar 

  12. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science (New York, NY) 320:942–945

    Article  CAS  Google Scholar 

  14. Duan L, Sebastian J, Dinneny JR (2015) Salt-stress regulation of root system growth and architecture in Arabidopsis seedlings. Methods Mol Biol 1242:105–122

    Article  CAS  PubMed  Google Scholar 

  15. El Zawily AM, Schwarzlander M, Finkemeier I, Johnston IG, Benamar A, Cao Y, Gissot C, Meyer AJ, Wilson K, Datla R et al (2014) FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis. Plant Physiol 166:808–828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fields SD, Conrad MN, Clarke M (1998) The S. cerevisiae CLU1 and D. discoideum cluA genes are functional homologues that influence mitochondrial morphology and distribution. J Cell Sci 111(12):1717–1727

  18. Gao J, Schatton D, Martinelli P, Hansen H, Pla-Martin D, Barth E, Becker C, Altmueller J, Frommolt P, Sardiello M et al (2014) CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins. J Cell Biol 207:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Glaser E, Alikhani N (2010) The organellar peptidasome, PreP: a journey from Arabidopsis to Alzheimer’s disease. Biochimica Biophysica Acta Bioenerg 1797:1076–1080

    Article  CAS  Google Scholar 

  20. Goh LH, Zhou X, Lee MC, Lin S, Wang H, Luo Y, Yang X (2013) Clueless regulates aPKC activity and promotes self-renewal cell fate in Drosophila lgl mutant larval brains. Dev Biol 381:353–364

    Article  CAS  PubMed  Google Scholar 

  21. Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23:5–22

    Article  PubMed  Google Scholar 

  22. Goncalves VF, Andreazza AC, Kennedy JL (2015) Mitochondrial dysfunction in schizophrenia: an evolutionary perspective. Hum Genet 134:13–21

    Article  CAS  PubMed  Google Scholar 

  23. Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 5:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82

    Article  CAS  PubMed  Google Scholar 

  25. Krols M, van Isterdael G, Asselbergh B, Kremer A, Lippens S, Timmerman V, Janssens S (2016) Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol 131:505–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li X, Zhang WS (2008) Salt-avoidance tropism in Arabidopsis thaliana. Plant Signal Behav 3:351–353

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF (2016) The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 100:238–256

    Article  CAS  PubMed  Google Scholar 

  28. Logan DC, Scott I, Tobin AK (2003) The genetic control of plant mitochondrial morphology and dynamics. Plant J 36:500–509

    Article  CAS  PubMed  Google Scholar 

  29. Martin M, Colman MJR, Gómez-Casati DF, Lamattina L, Zabaleta EJ (2009) Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Lett 583:542–548

    Article  CAS  PubMed  Google Scholar 

  30. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muller NA, Jimenez-Gomez JM (2016) Analysis of circadian leaf movements. Methods Mol Biol 1398:71–79

    Article  CAS  PubMed  Google Scholar 

  34. Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  35. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oka N (2016) Pathology of Charcot-Marie-Tooth disease. Brain Nerve 68:21–29

    CAS  PubMed  Google Scholar 

  37. Paszkiewicz G, Gualberto JM, Benamar A, Macherel D, Logan DC (2017) Arabidopsis seed mitochondria are bioenergetically active immediately upon imbibition and specialize via biogenesis in preparation for autotrophic growth. Plant Cell 29:109–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M (2015) Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev 48:10–21

    Article  CAS  PubMed  Google Scholar 

  39. Robert N, d’Erfurth I, Marmagne A, Erhardt M, Allot M, Boivin K, Gissot L, Monachello D, Michaud M, Duchene AM et al (2012) Voltage-dependent-anion-channels (VDACs) in Arabidopsis have a dual localization in the cell but show a distinct role in mitochondria. Plant Mol Biol 78:431–446

    Article  CAS  PubMed  Google Scholar 

  40. Ryu JY, Lee HJ, Seo PJ, Jung JH, Ahn JH, Park CM (2014) The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Mol Plant 7:377–387

    Article  CAS  PubMed  Google Scholar 

  41. Ryu JY, Park CM, Seo PJ (2011) The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Mol Cells 32:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schatton D, Pla-Martin D, Marx MC, Hansen H, Mourier A, Nemazanyy I, Pessia A, Zentis P, Corona T, Kondylis V et al (2017) CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs. J Cell Biol 216:675–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scott I, Tobin AK, Logan DC (2006) BIGYIN, an orthologue of human and yeast FIS1 genes functions in the control of mitochondrial size and number in Arabidopsis thaliana. J Exp Bot 57:1275–1280

    Article  CAS  PubMed  Google Scholar 

  44. Sen A, Kalvakuri S, Bodmer R, Cox RT (2015) Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in Drosophila. Dis Model Mech 8:577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimada TL, Shimada T, Hara-Nishimura I (2010) A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J 61:519–528

    Article  CAS  PubMed  Google Scholar 

  46. Silvertown J, Gordon DM (1989) A framework for plant behavior. Annu Rev Ecol Syst 20:349–366

    Article  Google Scholar 

  47. Sun F, Zhang W, Hu H, Li B, Wang Y, Zhao Y, Li K, Liu M, Li X (2008) Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol 146:178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vallejo AJ, Yanovsky MJ, Botto JF (2010) Germination variation in Arabidopsis thaliana accessions under moderate osmotic and salt stresses. Ann Bot 106:833–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35:669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wagner S, Behera S, De Bortoli S, Logan DC, Fuchs P, Carraretto L, Teardo E, Cendron L, Nietzel T, Fussl M et al (2015) The EF-hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in Arabidopsis. Plant Cell 27:3190–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu S, Baskin TI, Gallagher KL (2012) Mechanical fixation techniques for processing and orienting delicate samples, such as the root of Arabidopsis thaliana, for light or electron microscopy. Nat Protoc 7:1113–1124

    Article  CAS  PubMed  Google Scholar 

  52. Xu XM, Lin H, Maple J, Björkblom B, Alves G, Larsen JP, Møller SG (2010) The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation. J Cell Sci 123:1644–1651

    Article  CAS  PubMed  Google Scholar 

  53. Xu XM, Møller SG (2011) The value of Arabidopsis research in understanding human disease states. Curr Opin Biotechnol 22:300–307

    Article  CAS  PubMed  Google Scholar 

  54. Zhang X, Hu J (2009) Two small protein families, DYNAMIN-RELATED PROTEIN3 and FISSION1, are required for peroxisome fission in Arabidopsis. Plant J 57:146–159

    Article  CAS  PubMed  Google Scholar 

  55. Zhang XC, Hu JP (2008) FISSION1A and FISSION1B proteins mediate the fission of peroxisomes and mitochondria in Arabidopsis. Mol Plant 1:1036–1047

    Article  CAS  PubMed  Google Scholar 

  56. Zhu Q, Hulen D, Liu T, Clarke M (1997) The cluA-mutant of Dictyostelium identifies a novel class of proteins required for dispersion of mitochondria. Proc Natl Acad Sci USA 94:7308–7313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Health: AG052005, AG052986, AG051459, DK111178 to T.L.H. Work in the Mueller-Roeber group is supported by the Deutsche Forschungsgemeinschaft (DFG) grant within the Collaborative Research Centre 973 ‘Priming and Memory of Organismic Responses to Stress' (http://www.sfb973.de). We thank Life Science Editors for editing assistance at earlier version of the manuscript.

Funding

This work was supported by Grants from the National Institute of Health: AG052005, AG052986, AG051459, DK111178 to T.L.H. Work in the Mueller-Roeber group is supported by the Deutsche Forschungsgemeinschaft (DFG) grant within the Collaborative Research Centre 973 ‘Priming and Memory of Organismic Responses to Stress' (http://www.sfb973.de).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed study, AR and TLH; performed experiments, AR, FA, and JJO; analyzed results, AR, FA, and JJO; provided essential materials, FK, BMR, EIR and TLH; wrote the manuscript, AR and TLH; edited manuscript, all authors.

Corresponding author

Correspondence to Tamas L. Horvath.

Ethics declarations

Conflict of interest

Authors declare no competing interest.

Ethical approval

Animal work related to this study was approved by the Yale Institutional Animal Care and Use Committee.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 645 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ralevski, A., Apelt, F., Olas, J.J. et al. Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice. Cell. Mol. Life Sci. 79, 334 (2022). https://doi.org/10.1007/s00018-022-04382-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04382-3

Keywords

Navigation