Skip to main content

Advertisement

Log in

The HLA-G immune checkpoint: a new immuno-stimulatory role for the α1-domain-deleted isoform

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The heterogeneity of cancer cells, in part maintained via the expression of multiple isoforms, introduces significant challenges in designing effective therapeutic approaches. In this regard, isoforms of the immune checkpoint HLA-G have been found in most of the tumors analyzed, such as ccRCC, the most common human renal malignancy. In particular, HLA-G∆α1, which is the only HLA-G isoform described that lacks the α1 extracellular domain, has been newly identified in ccRCC and now here in trophoblasts. Using a cellular model expressing HLA-G∆α1, we have uncovered its specific and overlapping functional roles, relative to the main HLA-G isoform, i.e., the full-length HLA-G1. We found that HLA-G∆α1 has several particular features: (i) although possessing the α3 domain, it does not associate with β2-microglobulin; (ii) it may not present peptides to T cells due to absence of the peptide-binding groove; and (iii) it exerts immune-stimulatory activity towards peripheral blood NK and T cells, while all known isoforms of HLA-G are immune-inhibitory checkpoint molecules. Such immune-stimulatory properties of HLA-G∆α1 on the cytotoxic function of peripheral blood NK cells are individual dependent and are not exerted through the interaction with the known HLA-G receptor, ILT2. Importantly, we are faced here with a potential antitumor effect of an HLA-G isoform, opposed to the pro-tumor properties described for all other HLA-G isoforms, which should be taken into account in future therapeutic designs aimed at blocking this immune checkpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated in this study are available within the article.

References

  1. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y (2018) Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 11:39

    Article  Google Scholar 

  2. Motzer R, Alekseev B, Rha SY, Porta C, Eto M, Powles T, Grunwald V, Hutson TE, Kopyltsov E, Mendez-Vidal MJ, Kozlov V, Alyasova A, Hong SH, Kapoor A, Alonso Gordoa T, Merchan JR, Winquist E, Maroto P, Goh JC, Kim M, Gurney H, Patel V, Peer A, Procopio G, Takagi T, Melichar B, Rolland F, De Giorgi U, Wong S, Bedke J, Schmidinger M, Dutcus CE, Smith AD, Dutta L, Mody K, Perini RF, Xing D, Choueiri TK, Investigators CT (2021) Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med 384:1289–1300

    Article  CAS  Google Scholar 

  3. Carosella ED, Ploussard G, LeMaoult J, Desgrandchamps F (2015) A systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Eur Urol 68:267–279

    Article  CAS  Google Scholar 

  4. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J (2015) HLA-G: an immune checkpoint molecule. Adv Immunol 127:33–144

    Article  CAS  Google Scholar 

  5. Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci USA 94:11520–11525

    Article  CAS  Google Scholar 

  6. Rizzo R, Vercammen M, van de Velde H, Horn PA, Rebmann V (2011) The importance of HLA-G expression in embryos, trophoblast cells, and embryonic stem cells. Cell Mol Life Sci 68:341–352

    Article  CAS  Google Scholar 

  7. Gonen-Gross T, Achdout H, Gazit R, Hanna J, Mizrahi S, Markel G, Goldman-Wohl D, Yagel S, Horejsi V, Levy O, Baniyash M, Mandelboim O (2003) Complexes of HLA-G protein on the cell surface are important for leukocyte Ig-like receptor-1 function. J Immunol 171:1343–1351

    Article  CAS  Google Scholar 

  8. Diehl M, Munz C, Keilholz W, Stevanovic S, Holmes N, Loke YW, Rammensee HG (1996) Nonclassical HLA-G molecules are classical peptide presenters. Curr Biol: CB 6:305–314

    Article  CAS  Google Scholar 

  9. Lee N, Malacko AR, Ishitani A, Chen MC, Bajorath J, Marquardt H, Geraghty DE (1995) The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3:591–600

    Article  CAS  Google Scholar 

  10. Celik AA, Simper GS, Hiemisch W, Blasczyk R, Bade-Doding C (2018) HLA-G peptide preferences change in transformed cells: impact on the binding motif. Immunogenetics 70:485–494

    Article  CAS  Google Scholar 

  11. Shiroishi M, Kuroki K, Ose T, Rasubala L, Shiratori I, Arase H, Tsumoto K, Kumagai I, Kohda D, Maenaka K (2006) Efficient leukocyte Ig-like receptor signaling and crystal structure of disulfide-linked HLA-G dimer. J Biol Chem 281:10439–10447

    Article  CAS  Google Scholar 

  12. Shiroishi M, Tsumoto K, Amano K, Shirakihara Y, Colonna M, Braud VM, Allan DS, Makadzange A, Rowland-Jones S, Willcox B, Jones EY, van der Merwe PA, Kumagai I, Maenaka K (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA 100:8856–8861

    Article  CAS  Google Scholar 

  13. Gonen-Gross T, Achdout H, Arnon TI, Gazit R, Stern N, Horejsi V, Goldman-Wohl D, Yagel S, Mandelboim O (2005) The CD85J/leukocyte inhibitory receptor-1 distinguishes between conformed and beta 2-microglobulin-free HLA-G molecules. J Immunol 175:4866–4874

    Article  CAS  Google Scholar 

  14. Rajagopalan S, Long EO (1999) A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 189:1093–1100

    Article  CAS  Google Scholar 

  15. Rajagopalan S, Long EO (2012) KIR2DL4 (CD158d): an activation receptor for HLA-G. Front Immunol 3:258

    Article  Google Scholar 

  16. Rouas-Freiss N, LeMaoult J, Verine J, Tronik-Le Roux D, Culine S, Hennequin C, Desgrandchamps F, Carosella ED (2017) Intratumor heterogeneity of immune checkpoints in primary renal cell cancer: focus on HLA-G/ILT2/ILT4. Oncoimmunology 6:e1342023

    Article  Google Scholar 

  17. Dumont C, Jacquier A, Verine J, Noel F, Goujon A, Wu CL, Hung TM, Desgrandchamps F, Culine S, Carosella ED, Rouas-Freiss N, LeMaoult J (2019) CD8(+)PD-1(-)ILT2(+) T cells are an intratumoral cytotoxic population selectively inhibited by the immune-checkpoint HLA-G. Cancer Immunol Res 7:1619–1632

    Article  CAS  Google Scholar 

  18. Tronik-Le Roux D, Renard J, Verine J, Renault V, Tubacher E, LeMaoult J, Rouas-Freiss N, Deleuze JF, Desgrandschamps F, Carosella ED (2017) Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol Oncol 11:1561–1578

    Article  CAS  Google Scholar 

  19. Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED (1997) The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci USA 94:5249–5254

    Article  CAS  Google Scholar 

  20. Lesport E, Baudhuin J, Sousa S, LeMaoult J, Zamborlini A, Rouas-Freiss N, Carosella ED, Favier B (2011) Inhibition of human gamma delta [corrected] T-cell antitumoral activity through HLA-G: implications for immunotherapy of cancer. Cell Mol Life Sci 68:3385–3399

    Article  CAS  Google Scholar 

  21. Riteau B, Menier C, Khalil-Daher I, Martinozzi S, Pla M, Dausset J, Carosella ED, Rouas-Freiss N (2001) HLA-G1 co-expression boosts the HLA class I-mediated NK lysis inhibition. Int Immunol 13:193–201

    Article  CAS  Google Scholar 

  22. Jacquier A, Dumont C, Carosella ED, Rouas-Freiss N, LeMaoult J (2020) Cytometry-based analysis of HLA-G functions according to ILT2 expression. Hum Immunol 81:168–177

    Article  CAS  Google Scholar 

  23. Du WJ, Reppel L, Leger L, Schenowitz C, Huselstein C, Bensoussan D, Carosella ED, Han ZC, Rouas-Freiss N (2016) Mesenchymal stem cells derived from human bone marrow and adipose tissue maintain their immunosuppressive properties after chondrogenic differentiation: role of HLA-G. Stem Cells Dev 25:1454–1469

    Article  CAS  Google Scholar 

  24. Strickland S, Richards W (1992) Invasion of trophoblasts. Cell 71:355–357

    Article  CAS  Google Scholar 

  25. Tanabe M, Sekimata M, Ferrone S, Takiguchi M (1992) Structural and functional analysis of monomorphic determinants recognized by monoclonal antibodies reacting with the HLA class I alpha 3 domain. J Immunol 148:3202–3209

    CAS  PubMed  Google Scholar 

  26. Zilberman S, Schenowitz C, Agaugue S, Benoit F, Riteau B, Rouzier R, Carosella ED, Rouas-Freiss N, Menier C (2012) HLA-G1 and HLA-G5 active dimers are present in malignant cells and effusions: the influence of the tumor microenvironment. Eur J Immunol 42:1599–1608

    Article  CAS  Google Scholar 

  27. Vitting-Seerup K, Sandelin A (2017) The landscape of isoform switches in human cancers. Mol Cancer Res 15:1206–1220

    Article  CAS  Google Scholar 

  28. Kikuchi R, Stevens M, Harada K, Oltean S, Murohara T (2019) Anti-angiogenic isoform of vascular endothelial growth factor-A in cardiovascular and renal disease. Adv Clin Chem 88:1–33

    Article  CAS  Google Scholar 

  29. Anbarasan T, Bourdon JC (2019) The emerging landscape of p53 isoforms in physiology, cancer and degenerative diseases. Int J Mol Sci 20:6257

    Article  CAS  Google Scholar 

  30. Kuroki K, Mio K, Takahashi A, Matsubara H, Kasai Y, Manaka S, Kikkawa M, Hamada D, Sato C, Maenaka K (2017) Cutting edge: class II-like structural features and strong receptor binding of the nonclassical HLA-G2 isoform homodimer. J Immunol 198:3399–3403

    Article  CAS  Google Scholar 

  31. Dupin C, Lhuillier E, Letuve S, Pretolani M, Thabut G, Mal H, Carosella E, Schilte C, Mordant P, Castier Y, Bunel V, Danel C, Rouas-Freiss N, Brugiere O (2017) Inhibition of T cell alloreactivity by bronchial epithelium is impaired in lung transplant recipients, through pathways involving TGF-beta, IL-10 and HLA-G. Transplantation 101:2192–2199

    Article  CAS  Google Scholar 

  32. Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED (2001) HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol 166:5018–5026

    Article  CAS  Google Scholar 

  33. Bahri R, Hirsch F, Josse A, Rouas-Freiss N, Bidere N, Vasquez A, Carosella ED, Charpentier B, Durrbach A (2006) Soluble HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes. J Immunol 176:1331–1339

    Article  CAS  Google Scholar 

  34. Li C, Houser BL, Nicotra ML, Strominger JL (2009) HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc Natl Acad Sci USA 106:5767–5772

    Article  CAS  Google Scholar 

  35. Dragovich MA, Mor A (2018) The SLAM family receptors: potential therapeutic targets for inflammatory and autoimmune diseases. Autoimmun Rev 17:674–682

    Article  CAS  Google Scholar 

  36. Lin A, Yan WH (2018) Heterogeneity of HLA-G expression in cancers: facing the challenges. Front Immunol 9:2164

    Article  Google Scholar 

  37. Lin A, Zhang X, Zhang RL, Zhang JG, Zhou WJ, Yan WH (2018) Clinical significance of potential unidentified HLA-G isoforms without alpha1 domain but containing intron 4 in colorectal cancer patients. Front Oncol 8:361

    Article  Google Scholar 

  38. Carosella ED, Gregori S, Tronik-Le Roux D (2021) HLA-G/LILRBs: a cancer immunotherapy challenge. Trends Cancer 7:389–392

    Article  CAS  Google Scholar 

  39. Peng Y, Xiao J, Li W, Li S, Xie B, He J, Liu C (2021) Prognostic and clinicopathological value of human leukocyte antigen G in gastrointestinal cancers: a meta-analysis. Front Oncol 11:642902

    Article  Google Scholar 

Download references

Acknowledgements

The authors are particularly grateful to Dr. S. Ferrone (USA) who kindly provided the anti-HLA class I CR10-215 antibody and to Raluca Stanciu for experimental help on trophoblast analysis.

Funding

This work was supported by the Institut National du Cancer (INCA, PRTK-2018 OncoTheraGe), the Atomic Energy and Alternative Energies Agency (CEA) and the University of Paris, France.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DT-LR; NR-F, EDC. Methodology: MD, AJ, CS. Formal analysis and investigation: DT-LR; MD, NR-F, EDC. Writing—original draft preparation: DT-LR; NR-F. Resources: FD; DT-LR. Supervision: DT-LR; NR-F, EDC.

Corresponding author

Correspondence to Diana Tronik-Le Roux.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tronik-Le Roux, D., Daouya, M., Jacquier, A. et al. The HLA-G immune checkpoint: a new immuno-stimulatory role for the α1-domain-deleted isoform. Cell. Mol. Life Sci. 79, 310 (2022). https://doi.org/10.1007/s00018-022-04359-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04359-2

Keywords

Navigation