Skip to main content

Advertisement

Log in

Mechanisms involved in hematopoietic stem cell aging

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6

    Article  CAS  PubMed  Google Scholar 

  2. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460. https://doi.org/10.1038/246170a0

    Article  CAS  PubMed  Google Scholar 

  3. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512. https://doi.org/10.1038/nature08980

    Article  CAS  PubMed  Google Scholar 

  4. Buffenstein R (2005) The naked mole-rat : a new long-living model. J Gerontol A Biol Sci Med Sci 60:1369–1377

    Article  Google Scholar 

  5. Gordon LB, Rothman FG, López-Otín C, Misteli T (2014) Progeria: a paradigm for translational medicine. Cell 156:400–407. https://doi.org/10.1016/j.cell.2013.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Genovese G, Kähler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487. https://doi.org/10.1056/NEJMoa1409405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498. https://doi.org/10.1056/NEJMoa1408617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478. https://doi.org/10.1038/nm.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaiswal S, Natarajan P, Silver AJ et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377:111–121. https://doi.org/10.1056/NEJMoa1701719

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vanasse GJ, Berliner N (2010) Anemia in elderly patients: an emerging problem for the 21st century. Hematol Am Soc Hematol Educ Progr. https://doi.org/10.1182/asheducation-2010.1.271

    Article  Google Scholar 

  11. Guralnik JM, Eisenstaedt RS, Ferrucci L et al (2004) Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104:2263–2268. https://doi.org/10.1182/blood-2004-05-1812

    Article  CAS  PubMed  Google Scholar 

  12. Malcovati L, Gallì A, Travaglino E et al (2017) Clinical significance of somatic mutation in unexplained blood cytopenia. Blood 129:3371–3378. https://doi.org/10.1182/blood-2017-01-763425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kwok B, Hall JM, Witte JS et al (2015) MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood 126:2355–2361. https://doi.org/10.1182/blood-2015-08-667063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. World health organization (2020) The top 10 causes of death

  15. Denkinger MD, Leins H, Schirmbeck R et al (2015) HSC aging and senescent immune remodeling. Trends Immunol 36:815–824. https://doi.org/10.1016/j.it.2015.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192:1273–1280. https://doi.org/10.1084/jem.192.9.1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossi DJ, Bryder D, Zahn JM et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 102:9194–9199. https://doi.org/10.1073/pnas.0503280102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111:5553–5561. https://doi.org/10.1182/blood-2007-11-123547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernitz JM, Kim HS, MacArthur B et al (2016) Hematopoietic stem cells count and remember self-renewal divisions. Cell 167:1296-1309.e10. https://doi.org/10.1016/j.cell.2016.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto R, Wilkinson AC, Ooehara J et al (2018) Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell 22:600-607.e4. https://doi.org/10.1016/j.stem.2018.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naylor K, Li G, Vallejo AN et al (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174:7446–7452. https://doi.org/10.4049/jimmunol.174.11.7446

    Article  CAS  PubMed  Google Scholar 

  22. Qi Q, Liu Y, Cheng Y et al (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci USA 111:13139–13144. https://doi.org/10.1073/pnas.1409155111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller RA (1996) The aging immune system: primer and prospectus. Science (80-) 273:70–74. https://doi.org/10.1126/science.273.5271.70

    Article  CAS  Google Scholar 

  24. Chae WJ, Bothwell ALM (2018) Canonical and non-canonical wnt signaling in immune cells. Trends Immunol 39:830–847. https://doi.org/10.1016/j.it.2018.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Florian MC, Nattamai KJ, Dörr K et al (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503:392–396. https://doi.org/10.1038/nature12631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Florian MC, Dörr K, Niebel A et al (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10:520–530. https://doi.org/10.1016/j.stem.2012.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oh J, Lee YD, Wagers AJ (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 20:870–880. https://doi.org/10.1038/nm.3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akunuru S, Geiger H (2016) Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends Mol Med 22:701–712. https://doi.org/10.1016/j.molmed.2016.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Haan G, Lazare SS (2018) Aging of hematopoietic stem cells. Blood 131:479–487. https://doi.org/10.1182/blood-2017-06-746412

    Article  CAS  PubMed  Google Scholar 

  30. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644

    Article  CAS  Google Scholar 

  31. Dykstra B, Olthof S, Schreuder J et al (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208:2691–2703. https://doi.org/10.1084/jem.20111490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang Y, Van ZG, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106:1479–1487. https://doi.org/10.1182/blood-2004-11-4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheng T, Rodrigues N, Shen H et al (2000) Hematopoietic stem cell quiescence maintained by p21(cip1/waf1). Science (80-) 287:1804–1809. https://doi.org/10.1126/science.287.5459.1804

    Article  CAS  Google Scholar 

  34. He S, Sharpless NE (2017) Senescence in Health and Disease. Cell 169:1000–1011. https://doi.org/10.1016/j.cell.2017.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367. https://doi.org/10.1073/pnas.92.20.9363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Melk A, Schmidt BMW, Takeuchi O et al (2004) Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 65:510–520. https://doi.org/10.1111/j.1523-1755.2004.00438.x

    Article  CAS  PubMed  Google Scholar 

  37. Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452. https://doi.org/10.1038/nature05091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sousa-Victor P, Gutarra S, García-Prat L et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506:316–321. https://doi.org/10.1038/nature13013

    Article  CAS  PubMed  Google Scholar 

  39. Janzen V, Forkert R, Fleming HE et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16 INK4a. Nature 443:421–426. https://doi.org/10.1038/nature05159

    Article  CAS  PubMed  Google Scholar 

  40. Krishnamurthy J, Torrice C, Ramsey MR et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307. https://doi.org/10.1172/JCI22475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Signer RAJ, Montecino-Rodriguez E, Witte ON, Dorshkind K (2008) Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev 22:3115–3120. https://doi.org/10.1101/gad.1715808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Johnson SM, Fedoriw Y et al (2011) Expression of p16INK4a prevents cancer and promotes aging in lymphocytes. Blood 117:3257–3267. https://doi.org/10.1182/blood-2010-09-304402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12:2997–3007. https://doi.org/10.1101/gad.12.19.2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin AW, Barradas M, Stone JC et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008–3019. https://doi.org/10.1101/gad.12.19.3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell 88:593–602. https://doi.org/10.1016/S0092-8674(00)81902-9

    Article  CAS  PubMed  Google Scholar 

  46. Chicas A, Wang X, Zhang C et al (2010) Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17:376–387. https://doi.org/10.1016/j.ccr.2010.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodier F, Coppé JP, Patil CK et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979. https://doi.org/10.1038/ncb1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Coppé JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. https://doi.org/10.1371/journal.pbio.0060301

    Article  PubMed  PubMed Central  Google Scholar 

  49. Johmura Y, Shimada M, Misaki T et al (2014) Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell 55:73–84. https://doi.org/10.1016/j.molcel.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  50. Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15:203–211. https://doi.org/10.1038/sj.onc.1201178

    Article  CAS  PubMed  Google Scholar 

  51. Sharpless NE, Bardeesy N, Lee KH et al (2001) Loss of p16Ink4a with retention of p19 predisposes mice to tumorigenesis. Nature 413:86–91. https://doi.org/10.1038/35092592

    Article  CAS  PubMed  Google Scholar 

  52. Lujambio A, Akkari L, Simon J et al (2013) Non-cell-autonomous tumor suppression by p53. Cell 153:449–460. https://doi.org/10.1016/j.cell.2013.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xue W, Zender L, Miething C et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660. https://doi.org/10.1038/nature05529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krizhanovsky V, Yon M, Dickins RA et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667. https://doi.org/10.1016/j.cell.2008.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551. https://doi.org/10.1038/nature10599

    Article  CAS  PubMed  Google Scholar 

  56. Krtolica A, Parrinello S, Lockett S et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98:12072–12077. https://doi.org/10.1073/pnas.211053698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ohanna M, Giuliano S, Bonet C et al (2011) Senescent cells develop a parp-1 and nuclear factor-κB-associated secretome (PNAS). Genes Dev 25:1245–1261. https://doi.org/10.1101/gad.625811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Coppe JP, Kauser K, Campisi J, Beauséjour CM (2006) Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 281:29568–29574. https://doi.org/10.1074/jbc.M603307200

    Article  CAS  PubMed  Google Scholar 

  59. Lasry A, Ben-Neriah Y (2015) Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol 36:217–228. https://doi.org/10.1016/j.it.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  60. Michaloglou C, Vredeveld LCW, Soengas MS et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724. https://doi.org/10.1038/nature03890

    Article  CAS  PubMed  Google Scholar 

  61. Braig M, Lee S, Loddenkemper C et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665. https://doi.org/10.1038/nature03841

    Article  CAS  PubMed  Google Scholar 

  62. Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730. https://doi.org/10.1038/nature03918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Biavasco R, Lettera E, Giannetti K et al (2021) Oncogene-induced senescence in hematopoietic progenitors features myeloid restricted hematopoiesis, chronic inflammation and histiocytosis. Nat Commun 12:1–18. https://doi.org/10.1038/s41467-021-24876-1

    Article  CAS  Google Scholar 

  64. Attema JL, Pronk CJH, Norddahl GL et al (2009) Hematopoietic stem cell ageing is uncoupled from p16 INK4A -mediated senescence. Oncogene 28:2238–2243. https://doi.org/10.1038/onc.2009.94

    Article  CAS  PubMed  Google Scholar 

  65. Sun D, Luo M, Jeong M et al (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14:673–688. https://doi.org/10.1016/j.stem.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rogakou EP, Pilch DR, Orr AH et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868. https://doi.org/10.1074/jbc.273.10.5858

    Article  CAS  PubMed  Google Scholar 

  67. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  68. Beerman I, Seita J, Inlay MA et al (2014) Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15:37–50. https://doi.org/10.1016/j.stem.2014.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rossi DJ, BryderSeita DJ et al (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729. https://doi.org/10.1038/nature05862

    Article  CAS  PubMed  Google Scholar 

  70. Moehrle BM, Nattamai K, Brown A et al (2015) Stem cell-specific mechanisms ensure genomic fidelity within HSCs and upon aging of HSCs. Cell Rep 13:2412–2424. https://doi.org/10.1016/j.celrep.2015.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mohrin M, Bourke E, Alexander D et al (2010) Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7:174–185. https://doi.org/10.1016/j.stem.2010.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Insinga A, Cicalese A, Faretta M et al (2013) DNA damage in stem cells activates p21, inhibits p53, and induces symmetric self-renewing divisions. Proc Natl Acad Sci USA 110:3931–3936. https://doi.org/10.1073/pnas.1213394110

    Article  PubMed  PubMed Central  Google Scholar 

  73. Burtner CR, Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11:567–578. https://doi.org/10.1038/nrm2944

    Article  CAS  PubMed  Google Scholar 

  74. Ito K, Hirao A, Arai F et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002. https://doi.org/10.1038/nature02989

    Article  CAS  PubMed  Google Scholar 

  75. Nijnik A, Woodbine L, Marchetti C et al (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447:686–690. https://doi.org/10.1038/nature05875

    Article  CAS  PubMed  Google Scholar 

  76. Prasher JM, Lalai AS, Heijmans-Antonissen C et al (2005) Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice. EMBO J 24:861–871. https://doi.org/10.1038/sj.emboj.7600542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reese JS, Liu L, Gerson SL (2003) Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 102:1626–1633. https://doi.org/10.1182/blood-2002-10-3035

    Article  CAS  PubMed  Google Scholar 

  78. Zhang QS, Marquez-Loza L, Eaton L et al (2010) Fancd2-/- mice have hematopoietic defects that can be partially corrected by resveratrol. Blood 116:5140–5148. https://doi.org/10.1182/blood-2010-04-278226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ruzankina Y, Pinzon-Guzman C, Asare A et al (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1:113–126. https://doi.org/10.1016/j.stem.2007.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Santos MA, Faryabi RB, Ergen AV et al (2014) DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature 514:107–111. https://doi.org/10.1038/nature13483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science (80-) 319:1352–1355. https://doi.org/10.1126/science.1140735

    Article  CAS  Google Scholar 

  82. Abbas HA, MacCio DR, Coskun S et al (2010) Mdm2 Is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 7:606–617. https://doi.org/10.1016/j.stem.2010.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shay JW, Wright WE (2019) Telomeres and telomerase: three decades of progress. Nat Rev Genet 20:299–309. https://doi.org/10.1038/s41576-019-0099-1

    Article  CAS  PubMed  Google Scholar 

  84. Vaziri H, Dragowska W, Allsopp RC et al (1994) Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc Natl Acad Sci USA 91:9857–9860. https://doi.org/10.1073/pnas.91.21.9857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Allsopp RC, Morin GB, DePinho R et al (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102:517–520. https://doi.org/10.1182/blood-2002-07-2334

    Article  CAS  PubMed  Google Scholar 

  86. Allsoppi RC, Morin GB, Horner JW et al (2003) Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells [2]. Nat Med 9:369–371. https://doi.org/10.1038/nm0403-369

    Article  CAS  Google Scholar 

  87. Marrone A, Stevens D, Vulliamy T et al (2004) Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency. Blood 104:3936–3942. https://doi.org/10.1182/blood-2004-05-1829

    Article  CAS  PubMed  Google Scholar 

  88. Yamaguchi H, Calado RT, Ly H et al (2005) Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 352:1413–1424. https://doi.org/10.1056/nejmoa042980

    Article  CAS  PubMed  Google Scholar 

  89. Vulliamy T, Marrone A, Szydlo R et al (2004) Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 36:447–449. https://doi.org/10.1038/ng1346

    Article  CAS  PubMed  Google Scholar 

  90. Vulliamy T, Marrone A, Goldman F et al (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413:432–435. https://doi.org/10.1038/35096585

    Article  CAS  PubMed  Google Scholar 

  91. Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402:551–555. https://doi.org/10.1038/990141

    Article  CAS  PubMed  Google Scholar 

  92. Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607. https://doi.org/10.1038/s41580-019-0159-6

    Article  CAS  PubMed  Google Scholar 

  93. Trowbridge JJ, Snow JW, Kim J, Orkin SH (2009) DNA methyltransferase 1 Is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5:442–449. https://doi.org/10.1016/j.stem.2009.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Challen GA, Sun D, Jeong M et al (2012) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44:23–31. https://doi.org/10.1038/ng.1009

    Article  CAS  Google Scholar 

  95. Moran-Crusio K, Reavie L, Shih A et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11–24. https://doi.org/10.1016/j.ccr.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Quivoron C, Couronné L, Della Valle V et al (2011) TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20:25–38. https://doi.org/10.1016/j.ccr.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  97. Adelman ER, Huang HT, Roisman A et al (2019) Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov 9:1080–1101. https://doi.org/10.1158/2159-8290.CD-18-1474

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G (2017) Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171:34–57. https://doi.org/10.1016/j.cell.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  99. Beerman I, Rossi DJ (2015) Epigenetic control of stem cell potential during homeostasis, aging, and disease. Cell Stem Cell 16:613–625. https://doi.org/10.1016/j.stem.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jude CD, Climer L, Xu D et al (2007) Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 1:324–337. https://doi.org/10.1016/j.stem.2007.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xie H, Xu J, Hsu JH et al (2014) Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 14:68–80. https://doi.org/10.1016/j.stem.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  102. Park IK, Qian D, Kiel M et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305. https://doi.org/10.1038/nature01587

    Article  CAS  PubMed  Google Scholar 

  103. McMahon KA, Hiew SYL, Hadjur S et al (2007) Mll Has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1:338–345. https://doi.org/10.1016/j.stem.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  104. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21. https://doi.org/10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  105. Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  CAS  Google Scholar 

  106. Yu VWC, Yusuf RZ, Oki T et al (2016) Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167:1310-1322.e17. https://doi.org/10.1016/j.cell.2016.10.045

    Article  CAS  PubMed  Google Scholar 

  107. Cheung P, Vallania F, Warsinske HC et al (2018) Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173:1385-1397.e14. https://doi.org/10.1016/j.cell.2018.03.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bigarella CL, Liang R, Ghaffari S (2014) Stem cells and the impact of ROS signaling. Development 141:4206–4218. https://doi.org/10.1242/dev.107086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300. https://doi.org/10.1093/geronj/11.3.298

    Article  CAS  PubMed  Google Scholar 

  110. Jang Y, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063. https://doi.org/10.1182/blood-2007-05-087759.An

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yahata T, Takanashi T, Muguruma Y et al (2011) Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118:2941–2950. https://doi.org/10.1182/blood-2011-01-330050

    Article  CAS  PubMed  Google Scholar 

  112. Webb AE, Brunet A (2014) FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci 39:159–169. https://doi.org/10.1016/j.tibs.2014.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tothova Z, Kollipara R, Huntly BJ et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339. https://doi.org/10.1016/j.cell.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  114. Miyamoto K, Araki KY, Naka K et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1:101–112. https://doi.org/10.1016/j.stem.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  115. Wang Y, Hekimi S (2015) Mitochondrial dysfunction and longevity in animals: untangling the knot. Science (80-) 350:1204–1207. https://doi.org/10.1126/science.aac4357

    Article  CAS  Google Scholar 

  116. Norddahl GL, Pronk CJ, Wahlestedt M et al (2011) Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 8:499–510. https://doi.org/10.1016/j.stem.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  117. Ansó E, Weinberg SE, Diebold LP et al (2017) The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol 19:614–625. https://doi.org/10.1038/ncb3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Corral-Debrinski M, Horton T, Lott MT et al (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329. https://doi.org/10.1038/ng1292-324

    Article  CAS  PubMed  Google Scholar 

  119. Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18:6927–6933. https://doi.org/10.1093/nar/18.23.6927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Soong NW, Hinton DR, Cortopassi G, Arnheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 2:318–323. https://doi.org/10.1038/ng1292-318

    Article  CAS  PubMed  Google Scholar 

  121. Pikó L, Hougham AJ, Bulpitt KJ (1988) Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions/additions with aging. Mech Ageing Dev 43:279–293. https://doi.org/10.1016/0047-6374(88)90037-1

    Article  PubMed  Google Scholar 

  122. Harper ME, Monemdjou S, Ramsey JJ, Weindruch R (1998) Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes. Am J Physiol-Endocrinol Metab 275:197–206. https://doi.org/10.1152/ajpendo.1998.275.2.e197

    Article  Google Scholar 

  123. Mortensen M, Soilleux EJ, Djordjevic G et al (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208:455–467. https://doi.org/10.1084/jem.20101145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ho TT, Warr MR, Adelman ER et al (2017) Autophagy maintains the metabolism and function of young and old stem cells. Nature 543:205–210

    Article  CAS  Google Scholar 

  125. Jung HE, Shim YR, Oh JE et al (2019) The autophagy protein Atg5 plays a crucial role in the maintenance and reconstitution ability of hematopoietic stem cells. Immune Netw 19:1–13. https://doi.org/10.4110/in.2019.19.e12

    Article  CAS  Google Scholar 

  126. Dong S, Wang Q, Kao YR et al (2021) Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 591:117–123. https://doi.org/10.1038/s41586-020-03129-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mohrin M, Shin J, Liu Y et al (2015) A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science (80-) 347:1374–1377. https://doi.org/10.1126/science.aaa2361

    Article  CAS  Google Scholar 

  128. Jin G, Xu C, Zhang X et al (2018) Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells article. Nat Immunol 19:29–40. https://doi.org/10.1038/s41590-017-0002-1

    Article  CAS  PubMed  Google Scholar 

  129. Simsek T, Kocabas F, Zheng J et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390. https://doi.org/10.1016/j.stem.2010.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Takubo K, Nagamatsu G, Kobayashi CI et al (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12:49–61. https://doi.org/10.1016/j.stem.2012.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. López-Otín C, Galluzzi L, Freije JMP et al (2016) Metabolic control of longevity. Cell 166:802–821. https://doi.org/10.1016/j.cell.2016.07.031

    Article  CAS  PubMed  Google Scholar 

  132. Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15:243–256. https://doi.org/10.1038/nrm3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kharas MG, Okabe R, Ganis JJ et al (2010) Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115:1406–1415. https://doi.org/10.1182/blood-2009-06-229443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang J, Grindley JC, Yin T et al (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441:518–522. https://doi.org/10.1038/nature04747

    Article  CAS  PubMed  Google Scholar 

  135. Yilmaz ÖH, Valdez R, Theisen BK et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482. https://doi.org/10.1038/nature04703

    Article  CAS  PubMed  Google Scholar 

  136. Gan B, Sahin E, Jiang S et al (2008) mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 105:19384–19389. https://doi.org/10.1073/pnas.0810584105

    Article  PubMed  PubMed Central  Google Scholar 

  137. Juntilla MM, Patil VD, Calamito M et al (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115:4030–4038. https://doi.org/10.1182/blood-2009-09-241000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gan B, Hu J, Jiang S et al (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468:701–704. https://doi.org/10.1038/nature09595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen C, Liu Y, Liu R et al (2008) TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205:2397–2408. https://doi.org/10.1084/jem.20081297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kalaitzidis D, Sykes SM, Wang Z et al (2012) MTOR complex 1 plays critical roles in hematopoiesis and pten-loss-evoked leukemogenesis. Cell Stem Cell 11:429–439. https://doi.org/10.1016/j.stem.2012.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Aman Y, Schmauck-Medina T, Hansen M et al (2021) Autophagy in healthy aging and disease. Nat Aging 1:634–650. https://doi.org/10.1038/s43587-021-00098-4

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hidalgo San Jose L, Sunshine MJ, Dillingham CH et al (2020) Modest declines in proteome quality impair hematopoietic stem cell self-renewal. Cell Rep 30:69-80.e6. https://doi.org/10.1016/j.celrep.2019.12.003

    Article  CAS  PubMed  Google Scholar 

  143. Signer RAJ, Magee JA, Salic A, Morrison SJ (2014) Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 508:49–54. https://doi.org/10.1038/nature13035

    Article  CAS  Google Scholar 

  144. Warr MR, Binnewies M, Flach J et al (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494:323–327. https://doi.org/10.1038/nature11895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381. https://doi.org/10.1038/s41580-018-0001-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238. https://doi.org/10.1038/nrm3293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rimmelé P, Bigarella CL, Liang R et al (2014) Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Reports 3:44–59. https://doi.org/10.1016/j.stemcr.2014.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Brown K, Xie S, Qiu X et al (2013) SIRT3 reverses aging-associated degeneration. Cell Rep 3:319–327. https://doi.org/10.1016/j.celrep.2013.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang H, Diao D, Shi Z et al (2016) SIRT6 controls hematopoietic stem cell homeostasis through epigenetic regulation of Wnt signaling. Cell Stem Cell 18:495–507. https://doi.org/10.1016/j.stem.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  150. Luo H, Mu WC, Karki R et al (2019) Mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep 26:945-954.e4. https://doi.org/10.1016/j.celrep.2018.12.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Grigoryan A, Guidi N, Senger K et al (2018) LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol 19:1–21. https://doi.org/10.1186/s13059-018-1557-3

    Article  CAS  Google Scholar 

  152. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  PubMed  Google Scholar 

  153. Pinho S, Frenette PS (2019) Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 20:303–320. https://doi.org/10.1038/s41580-019-0103-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gong JK (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science 199:1443–1445. https://doi.org/10.1126/science.75570

    Article  CAS  PubMed  Google Scholar 

  155. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97:2293–2299. https://doi.org/10.1182/blood.V97.8.2293

    Article  CAS  PubMed  Google Scholar 

  156. Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846. https://doi.org/10.1038/nature02040

    Article  CAS  PubMed  Google Scholar 

  157. Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841. https://doi.org/10.1038/nature02041

    Article  CAS  PubMed  Google Scholar 

  158. Xie Y, Yin T, Wiegraebe W et al (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101. https://doi.org/10.1038/nature07639

    Article  CAS  PubMed  Google Scholar 

  159. Lo Celso C, Fleming HE, Wu JW et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96. https://doi.org/10.1038/nature07434

    Article  CAS  PubMed  Google Scholar 

  160. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235. https://doi.org/10.1038/nature11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Katayama Y, Battista M, Kao WM et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421. https://doi.org/10.1016/j.cell.2005.10.041

    Article  CAS  PubMed  Google Scholar 

  162. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447. https://doi.org/10.1038/nature06685

    Article  CAS  PubMed  Google Scholar 

  163. Spiegel A, Shivtiel S, Kalinkovich A et al (2007) Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 8:1123–1131. https://doi.org/10.1038/ni1509

    Article  CAS  PubMed  Google Scholar 

  164. Greenbaum A, Hsu YMS, Day RB et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230. https://doi.org/10.1038/nature11926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  Google Scholar 

  166. Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Asada N, Kunisaki Y, Pierce H et al (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19:214–223. https://doi.org/10.1038/ncb3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell Pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988. https://doi.org/10.1016/j.immuni.2006.10.016

    Article  CAS  PubMed  Google Scholar 

  169. Kunisaki Y, Bruns I, Scheiermann C et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643. https://doi.org/10.1038/nature12612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhou BO, Yue R, Murphy MM et al (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168. https://doi.org/10.1016/j.stem.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bruns I, Lucas D, Pinho S et al (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20:1315–1320. https://doi.org/10.1038/nm.3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhao M, Perry JM, Marshall H et al (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20:1321–1326. https://doi.org/10.1038/nm.3706

    Article  CAS  PubMed  Google Scholar 

  173. Pinho S, Marchand T, Yang E et al (2018) Lineage-biased hematopoietic stem cells are regulated by distinct niches. Dev Cell 44:634-641.e4. https://doi.org/10.1016/j.devcel.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nakamura-Ishizu A, Takubo K, Fujioka M, Suda T (2014) Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem Biophys Res Commun 454:353–357. https://doi.org/10.1016/j.bbrc.2014.10.095

    Article  CAS  PubMed  Google Scholar 

  175. Chow A, Lucas D, Hidalgo A et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208:761–771. https://doi.org/10.1084/jem.20101688

    Article  CAS  Google Scholar 

  176. Ludin A, Itkin T, Gur-Cohen S et al (2012) Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 13:1072–1082. https://doi.org/10.1038/ni.2408

    Article  CAS  PubMed  Google Scholar 

  177. Hur J, Il CJ, Lee H et al (2016) CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell 18:508–521. https://doi.org/10.1016/j.stem.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  178. Winkler IG, Sims NA, Pettit AR et al (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116:4815–4828. https://doi.org/10.1182/blood-2009-11-253534

    Article  CAS  PubMed  Google Scholar 

  179. Christopher MJ, Rao M, Liu F et al (2011) Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 208:251–260. https://doi.org/10.1084/jem.20101700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fujisaki J, Wu J, Carlson AL et al (2011) In vivo imaging of T reg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474:216–220. https://doi.org/10.1038/nature10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hirata Y, Furuhashi K, Ishii H et al (2018) CD150 high bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22:445-453.e5. https://doi.org/10.1016/j.stem.2018.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462. https://doi.org/10.1038/nature10783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Acar M, Kocherlakota KS, Murphy MM et al (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–130. https://doi.org/10.1038/nature15250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Saçma M, Pospiech J, Bogeska R et al (2019) Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat Cell Biol 21:1309–1320. https://doi.org/10.1038/s41556-019-0418-y

    Article  CAS  PubMed  Google Scholar 

  185. Xu C, Gao X, Wei Q et al (2018) Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-04726-3

    Article  CAS  Google Scholar 

  186. Itkin T, Gur-Cohen S, Spencer JA et al (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328. https://doi.org/10.1038/nature17624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kusumbe AP, Ramasamy SK, Itkin T et al (2016) Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532:380–384. https://doi.org/10.1038/nature17638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Maryanovich M, Zahalka AH, Pierce H et al (2018) Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med 24:782–791. https://doi.org/10.1038/s41591-018-0030-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ho YH, del Toro R, Rivera-Torres J et al (2019) Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25:407-418.e6. https://doi.org/10.1016/j.stem.2019.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Poulos MG, Ramalingam P, Gutkin MC et al (2017) Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J Clin Invest 127:4163–4178. https://doi.org/10.1172/JCI93940

    Article  PubMed  PubMed Central  Google Scholar 

  191. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell 3:379–389. https://doi.org/10.1111/j.1474-9728.2004.00127.x

    Article  CAS  PubMed  Google Scholar 

  192. Singh L, Brennan TA, Russell E et al (2016) Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone 85:29–36. https://doi.org/10.1016/j.bone.2016.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nishikawa K, Nakashima T, Takeda S et al (2010) Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 120:3455–3465. https://doi.org/10.1172/JCI42528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Fazeli PK, Horowitz MC, MacDougald OA et al (2013) Marrow fat and bone-new perspectives. J Clin Endocrinol Metab 98:935–945. https://doi.org/10.1210/jc.2012-3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Schwartz AV (2015) Marrow fat and bone: Review of clinical findings. Front Endocrinol (Lausanne) 6:1–6. https://doi.org/10.3389/fendo.2015.00040

    Article  Google Scholar 

  196. Naveiras O, Nardi V, Wenzel PL et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263. https://doi.org/10.1038/nature08099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ambrosi TH, Scialdone A, Graja A et al (2017) Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20:771-784.e6. https://doi.org/10.1016/j.stem.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gnani D, Crippa S, della Volpe L et al (2019) An early-senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro-inflammatory program. Aging Cell. https://doi.org/10.1111/acel.12933

    Article  PubMed  PubMed Central  Google Scholar 

  199. Liu J, Ding Y, Liu Z, Liang X (2020) Senescence in mesenchymal stem cells: functional alterations, molecular mechanisms, and rejuvenation strategies. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.00258

    Article  PubMed  PubMed Central  Google Scholar 

  200. Ho YH, Méndez-Ferrer S (2020) Microenvironmental contributions to hematopoietic stem cell aging. Haematologica 105:38–46. https://doi.org/10.3324/haematol.2018.211334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ferrucci L, Corsi A, Lauretani F et al (2005) The origins of age-related proinflammatory state. Blood 105:2294–2299. https://doi.org/10.1182/blood-2004-07-2599

    Article  CAS  PubMed  Google Scholar 

  202. Frisch BJ, Hoffman CM, Latchney SE et al (2019) Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight. https://doi.org/10.1172/jci.insight.124213

    Article  PubMed  PubMed Central  Google Scholar 

  203. Henry CJ, Casás-Selves M, Kim J et al (2015) Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. J Clin Invest 125:4666–4680. https://doi.org/10.1172/JCI83024

    Article  PubMed  PubMed Central  Google Scholar 

  204. Valletta S, Thomas A, Meng Y et al (2020) Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing. Nat Commun. https://doi.org/10.1038/s41467-020-17942-7

    Article  PubMed  PubMed Central  Google Scholar 

  205. Pioli PD, Casero D, Montecino-Rodriguez E et al (2019) Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow. Immunity 51:351-366.e6. https://doi.org/10.1016/j.immuni.2019.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ergen AV, Boles NC, Goodell MA (2012) Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119:2500–2509. https://doi.org/10.1182/blood-2011-11-391730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yamashita M, Passegué E (2019) TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 25:357-372.e7. https://doi.org/10.1016/j.stem.2019.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Schürch CM, Riether C, Ochsenbein AF (2014) Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 14:460–472. https://doi.org/10.1016/j.stem.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  209. Pietras EM, Mirantes-Barbeito C, Fong S et al (2016) Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol 18:607–618. https://doi.org/10.1038/ncb3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Essers MAG, Offner S, Blanco-Bose WE et al (2009) IFNα activates dormant haematopoietic stem cells in vivo. Nature 458:904–908. https://doi.org/10.1038/nature07815

    Article  CAS  PubMed  Google Scholar 

  211. Baldridge MT, King KY, Boles NC et al (2010) Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465:793–797. https://doi.org/10.1038/nature09135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Takizawa H, Regoes RR, Boddupalli CS et al (2011) Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 208:273–284. https://doi.org/10.1084/jem.20101643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Esplin BL, Shimazu T, Welner RS et al (2011) Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 186:5367–5375. https://doi.org/10.4049/jimmunol.1003438

    Article  CAS  PubMed  Google Scholar 

  214. Sato T, Onai N, Yoshihara H et al (2009) Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat Med 15:696–700. https://doi.org/10.1038/nm.1973

    Article  CAS  PubMed  Google Scholar 

  215. Walter D, Lier A, Geiselhart A et al (2015) Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520:549–552. https://doi.org/10.1038/nature14131

    Article  CAS  PubMed  Google Scholar 

  216. Haas S, Hansson J, Klimmeck D et al (2015) Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17:422–434. https://doi.org/10.1016/j.stem.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  217. Kaser A, Brandacher G, Steurer W et al (2001) Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood 98:2720–2725. https://doi.org/10.1182/blood.V98.9.2720

    Article  CAS  PubMed  Google Scholar 

  218. Matatall KA, Jeong M, Chen S et al (2016) Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation. Cell Rep 17:2584–2595. https://doi.org/10.1016/j.celrep.2016.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zoumbos NC, Gascon P, Djeu JY, Young NS (1985) Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc Natl Acad Sci USA 82:188–192. https://doi.org/10.1073/pnas.82.1.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Chen YF, Wu ZM, Xie C et al (2013) Expression level of IL-6 secreted by bone marrow stromal cells in mice with aplastic anemia. ISRN Hematol 2013:1–6. https://doi.org/10.1155/2013/986219

    Article  CAS  Google Scholar 

  221. Fuster JJ, MacLauchlan S, Zuriaga MA et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–847. https://doi.org/10.1126/science.aag1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ross-Innes CS, Becq J, Warren A et al (2015) Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat Genet 47:1038–1046. https://doi.org/10.1038/ng.3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Stachler MD, Taylor-Weiner A, Peng S et al (2015) Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat Genet 47:1047–1055. https://doi.org/10.1038/ng.3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nanki K, Fujii M, Shimokawa M et al (2020) Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577:254–259. https://doi.org/10.1038/s41586-019-1844-5

    Article  CAS  PubMed  Google Scholar 

  225. Kakiuchi N, Yoshida K, Uchino M et al (2020) Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577:260–265. https://doi.org/10.1038/s41586-019-1856-1

    Article  CAS  PubMed  Google Scholar 

  226. Brunner SF, Roberts ND, Wylie LA et al (2019) Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574:538–542. https://doi.org/10.1038/s41586-019-1670-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Steensma DP, Bejar R, Jaiswal S et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16. https://doi.org/10.1182/blood-2015-03-631747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Young AL, Challen GA, Birmann BM, Druley TE (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms12484

    Article  CAS  Google Scholar 

  229. McKerrell T, Park N, Moreno T et al (2015) Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 10:1239–1245. https://doi.org/10.1016/j.celrep.2015.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lee-Six H, Øbro NF, Shepherd MS et al (2018) Population dynamics of normal human blood inferred from somatic mutations. Nature 561:473–478. https://doi.org/10.1038/s41586-018-0497-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Sun J, Ramos A, Chapman B et al (2014) Clonal dynamics of native haematopoiesis. Nature 514:322–327. https://doi.org/10.1038/nature13824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS et al (2018) Clonal analysis of lineage fate in native haematopoiesis. Nature 553:212–216. https://doi.org/10.1038/nature25168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Sawai CM, Babovic S, Upadhaya S et al (2016) Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45:597–609. https://doi.org/10.1016/j.immuni.2016.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Pei W, Feyerabend TB, Rössler J et al (2017) Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548:456–460. https://doi.org/10.1038/nature23653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Busch K, Klapproth K, Barile M et al (2015) Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518:542–546. https://doi.org/10.1038/nature14242

    Article  CAS  PubMed  Google Scholar 

  236. Ganuza M, Hall T, Finkelstein D et al (2019) The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood 133:1927–1942. https://doi.org/10.1182/blood-2018-09-873059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Makishima H, Yoshizato T, Yoshida K et al (2017) Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet 49:204–212. https://doi.org/10.1038/ng.3742

    Article  CAS  PubMed  Google Scholar 

  238. Walter MJ, Shen D, Ding L et al (2012) Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 366:1090–1098. https://doi.org/10.1056/NEJMoa1106968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Challen GA, Sun D, Mayle A et al (2014) Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15:350–364. https://doi.org/10.1016/j.stem.2014.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Fujino T, Goyama S, Sugiura Y et al (2021) Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat Commun 12:1–20. https://doi.org/10.1038/s41467-021-22053-y

    Article  CAS  Google Scholar 

  241. Coombs CC, Zehir A, Devlin SM et al (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21:374-382.e4. https://doi.org/10.1016/j.stem.2017.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kahn JD, Miller PG, Silver AJ et al (2018) PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132:1095–1105. https://doi.org/10.1182/blood-2018-05-850339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Hsu JI, Dayaram T, Tovy A et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700-713.e6. https://doi.org/10.1016/j.stem.2018.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bondar T, Medzhitov R (2010) p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6:309–322. https://doi.org/10.1016/j.stem.2010.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Hormaechea-Agulla D, Matatall KA, Le DT et al (2021) Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 28:1428-1442.e6. https://doi.org/10.1016/j.stem.2021.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Higa KC, Goodspeed A, Chavez JS et al (2021) Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J Exp Med. https://doi.org/10.1084/jem.20200560

    Article  PubMed  PubMed Central  Google Scholar 

  247. Meisel M, Hinterleitner R, Pacis A et al (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580–584. https://doi.org/10.1038/s41586-018-0125-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Muto T, Walker CS, Choi K et al (2020) Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat Immunol 21:535–545. https://doi.org/10.1038/s41590-020-0663-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Zhang Q, Zhao K, Shen Q et al (2015) Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525:389–393. https://doi.org/10.1038/nature15252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Cai Z, Kotzin JJ, Ramdas B et al (2018) Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23:833-849.e5. https://doi.org/10.1016/j.stem.2018.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Conboy IM, Conboy MJ, Wagers AJ et al (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764. https://doi.org/10.1038/nature03260

    Article  CAS  PubMed  Google Scholar 

  252. Loffredo FS, Steinhauser ML, Jay SM et al (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153:828–839. https://doi.org/10.1016/j.cell.2013.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Katsimpardi L, Litterman NK, Schein PA et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–634. https://doi.org/10.1126/science.1251141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Sinha M, Jang YC, Oh J et al (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344:649–652. https://doi.org/10.1126/science.1251152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ho TT, Dellorusso PV, Verovskaya EV et al (2021) Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. J Exp Med. https://doi.org/10.1084/jem.20210223

    Article  PubMed  PubMed Central  Google Scholar 

  256. Kuribayashi W, Oshima M, Itokawa N et al (2021) Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche. J Exp Med. https://doi.org/10.1084/jem.20192283

    Article  PubMed  Google Scholar 

  257. Wahlestedt M, Norddahl GL, Sten G et al (2013) An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 121:4257–4264. https://doi.org/10.1182/blood-2012-11-469080

    Article  CAS  PubMed  Google Scholar 

  258. Wahlestedt M, Erlandsson E, Kristiansen T et al (2017) Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate. Nat Commun. https://doi.org/10.1038/ncomms14533

    Article  PubMed  PubMed Central  Google Scholar 

  259. Nitta E, Itokawa N, Yabata S et al (2020) Bmi1 counteracts hematopoietic stem cell aging by repressing target genes and enforcing the stem cell gene signature. Biochem Biophys Res Commun 521:612–619. https://doi.org/10.1016/j.bbrc.2019.10.153

    Article  CAS  PubMed  Google Scholar 

  260. Agathocleous M, Meacham CE, Burgess RJ et al (2017) Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549:476–481. https://doi.org/10.1038/nature23876

    Article  PubMed  PubMed Central  Google Scholar 

  261. Cimmino L, Dolgalev I, Wang Y et al (2017) Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170:1079-1095.e20. https://doi.org/10.1016/j.cell.2017.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Cheng CW, Adams GB, Perin L et al (2014) Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell- based regeneration and reverse immunosuppression. Cell Stem Cell 14:810–823. https://doi.org/10.1016/j.stem.2014.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2:ra75. https://doi.org/10.1126/scisignal.2000559

    Article  PubMed  PubMed Central  Google Scholar 

  264. Young K, Eudy E, Bell R et al (2021) Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell 28:1473-1482.e7. https://doi.org/10.1016/j.stem.2021.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Mansell E, Sigurdsson V, Deltcheva E et al (2021) Mitochondrial potentiation ameliorates age-related heterogeneity in hematopoietic stem cell function. Cell Stem Cell 28:241-256.e6. https://doi.org/10.1016/j.stem.2020.09.018

    Article  CAS  PubMed  Google Scholar 

  266. Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236. https://doi.org/10.1038/nature10600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Baar MP, Brandt RMC, Putavet DA et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132-147.e16. https://doi.org/10.1016/j.cell.2017.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature 530:184–189. https://doi.org/10.1038/nature16932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Chang J, Wang Y, Shao L et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83. https://doi.org/10.1038/nm.4010

    Article  CAS  PubMed  Google Scholar 

  270. Laurenti E, Göttgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553:418–426. https://doi.org/10.1038/nature25022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Zhang P, Li X, Pan C et al (2022) Single-cell RNA sequencing to track novel perspectives in HSC heterogeneity. Stem Cell Res Ther 13:1–15. https://doi.org/10.1186/s13287-022-02718-1

    Article  CAS  Google Scholar 

  272. Grover A, Sanjuan-Pla A, Thongjuea S et al (2016) Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat Commun. https://doi.org/10.1038/ncomms11075

    Article  PubMed  PubMed Central  Google Scholar 

  273. Zhong L, Yao L, Tower RJ et al (2020) Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife 9:1–28. https://doi.org/10.7554/eLife.54695

    Article  Google Scholar 

  274. Almanzar N, Antony J, Baghel AS et al (2020) A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583:590–595. https://doi.org/10.1038/s41586-020-2496-1

    Article  CAS  Google Scholar 

  275. Miles LA, Bowman RL, Merlinsky TR et al (2020) Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 587:477–482. https://doi.org/10.1038/s41586-020-2864-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Nam AS, Dusaj N, Izzo F et al (2022) Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. BioRxiv. https://doi.org/10.1101/2022.01.14.476225

    Article  Google Scholar 

  277. World health organization (2021) Ageing and health

  278. Pang WW, Price EA, Sahoo D et al (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci USA 108:20012–20017. https://doi.org/10.1073/pnas.1116110108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grant-in-Aid for Scientific Research (A) (No. 20H00537) (to T.K.), Grant-in-Aid for Scientific Research on Innovative Areas “Stem Cell Aging and Disease” (No. 17H05634), The Tokyo Biochemical Research Foundation (to T.K.), Japanese Society of Hematology (to T.K.).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by TF, SA, SG, and TK took part in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Toshio Kitamura.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujino, T., Asada, S., Goyama, S. et al. Mechanisms involved in hematopoietic stem cell aging. Cell. Mol. Life Sci. 79, 473 (2022). https://doi.org/10.1007/s00018-022-04356-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04356-5

Keywords

Navigation