Skip to main content

Advertisement

Log in

Therapeutic potential of a single-dose melatonin in the attenuation of cardiac ischemia/reperfusion injury in prediabetic obese rats

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Although acute melatonin treatment effectively reduces cardiac ischemia/reperfusion (I/R) injury in lean rats by modulating melatonin receptor 2 (MT2), there is no information regarding the temporal effects of melatonin administration during cardiac I/R injury in prediabetic obese rats. Prediabetic obese rats induced by chronic consumption of a high-fat diet (HFD) were used. The rats underwent a cardiac I/R surgical procedure (30-min of ischemia, followed by 120-min of reperfusion) and were randomly assigned to receive either vehicle or melatonin treatment. In the melatonin group, rats were divided into 3 different subgroups: (1) pretreatment, (2) treatment during ischemic period, (3) treatment at the reperfusion onset. In the pretreatment subgroup either a nonspecific MT blocker (Luzindole) or specific MT2 blocker (4-PPDOT) was also given to the rats prior to melatonin treatment. Pretreatment with melatonin (10 mg/kg) effectively reduced cardiac I/R injury by reducing infarct size, arrhythmia, and LV dysfunction. Reduction in impaired mitochondrial function, mitochondrial dynamic balance, oxidative stress, defective autophagy, and apoptosis were observed in rats pretreated with melatonin. Unfortunately, the cardioprotective benefits were not observed when 10-mg/kg of melatonin was acutely administered to the rats after cardiac ischemia. Thus, we increased the dose of melatonin to 20 mg/kg, and it was administered to the rats during ischemia or at the onset of reperfusion. The results showed that 20-mg/kg of melatonin effectively reduced cardiac I/R injury to a similar extent to the 10-mg/kg pretreatment regimen. The MT2 blocker inhibited the protective effects of melatonin. Acute melatonin treatment during cardiac I/R injury exerted protective effects in prediabetic obese rats. However, a higher dose of melatonin is required when given after the onset of cardiac ischemia. These effects of melatonin were mainly mediated through activation of MT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

Abbreviations

LV:

Left ventricular

Cardiac I/R injury:

Cardiac ischemia/reperfusion injury

HFD:

High-fat diet

Mel:

Melatonin

ND:

Normal diet

MT:

Melatonin receptor

Drp1:

Dynamin related protein 1

Opa1:

Optic atrophy 1

Mfn1:

Mitofusin 1

Mfn2:

Mitofusin 2

NSS:

Normal saline solution

Luz:

Luzindole

Dot:

4-PPDOT

HF-PMel:

Prediabetic obese rats pretreatment with melatonin

HF-IMel:

Prediabetic obese rats treated with melatonin during myocardial ischemia

HF-RMel:

Prediabetic obese rats treated with melatonin at onset of reperfusion

HF-MelLuz:

Prediabetic obese rats treated with melatonin and Luzindole

HF-MelDot:

Prediabetic obese rats treated with melatonin and 4-PPDOT

iv:

Intravenous

ECG:

Electrocardiogram

TTC:

2,3,5-Triphenyltetrazolium chloride

LAD:

Left anteriror descending coronary artery

HR:

Heart rate

LVEF:

Left ventricular ejection fraction

LVESP:

Left ventricular end-systolic pressure

LVEDP:

Left ventricular end-diastolic pressure

AAR:

Area at risk

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

a.u.:

Arbitrary unit

References

  1. Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics 33(7):673–689. https://doi.org/10.1007/s40273-014-0243-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bhupathiraju SN, Hu FB (2016) Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res 118(11):1723–1735. https://doi.org/10.1161/circresaha.115.306825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135. https://doi.org/10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  4. Tanajak P, Sa-Nguanmoo P, Sivasinprasasn S, Thummasorn S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N (2018) Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia–reperfusion injury. J Endocrinol 236(2):69–84. https://doi.org/10.1530/joe-17-0457

    Article  CAS  PubMed  Google Scholar 

  5. Apaijai N, Chinda K, Palee S, Chattipakorn S, Chattipakorn N (2014) Combined vildagliptin and metformin exert better cardioprotection than monotherapy against ischemia–reperfusion injury in obese-insulin resistant rats. PLoS ONE 9(7):e102374. https://doi.org/10.1371/journal.pone.0102374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Apaijai N, Chattipakorn SC, Chattipakorn N (2014) Roles of obese-insulin resistance and anti-diabetic drugs on the heart with ischemia–reperfusion injury. Cardiovasc Drugs Ther 28(6):549–562. https://doi.org/10.1007/s10557-014-6553-6

    Article  CAS  PubMed  Google Scholar 

  7. Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, Yu L, Liu Z, Yu B, Ren K, Gao E, Yang Y, Liang H, Jin Z, Yu S (2017) Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res. https://doi.org/10.1111/jpi.12419

    Article  PubMed  Google Scholar 

  8. Singhanat K, Apaijai N, Jaiwongkam T, Kerdphoo S, Chattipakorn SC, Chattipakorn N (2021) Melatonin as a therapy in cardiac ischemia–reperfusion injury: potential mechanisms by which MT2 activation mediates cardioprotection. J Adv Res 29:33–44. https://doi.org/10.1016/j.jare.2020.09.007

    Article  CAS  PubMed  Google Scholar 

  9. Han D, Wang Y, Chen J, Zhang J, Yu P, Zhang R, Li S, Tao B, Wang Y, Qiu Y, Xu M, Gao E, Cao F (2019) Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin-conferred cardioprotection against myocardial ischemia/reperfusion injury. J Pineal Res 67(1):e12571. https://doi.org/10.1111/jpi.12571

    Article  CAS  PubMed  Google Scholar 

  10. Dominguez-Rodriguez A, Abreu-Gonzalez P, de la Torre-Hernandez JM, Consuegra-Sanchez L, Piccolo R, Gonzalez-Gonzalez J, Garcia-Camarero T, Del Mar G-S, Aldea-Perona A, Reiter RJ (2017) Usefulness of early treatment with melatonin to reduce infarct size in patients with ST-segment elevation myocardial infarction receiving percutaneous coronary intervention (from the melatonin adjunct in the acute myocardial infarction treated with angioplasty trial). Am J Cardiol 120(4):522–526. https://doi.org/10.1016/j.amjcard.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  11. Singhanat K, Apaijai N, Chattipakorn SC, Chattipakorn N (2018) Roles of melatonin and its receptors in cardiac ischemia–reperfusion injury. Cell Mol Life Sci 75(22):4125–4149. https://doi.org/10.1007/s00018-018-2905-x

    Article  CAS  PubMed  Google Scholar 

  12. Sallinen P, Saarela S, Ilves M, Vakkuri O, Leppäluoto J (2005) The expression of MT1 and MT2 melatonin receptor mRNA in several rat tissues. Life Sci 76(10):1123–1134. https://doi.org/10.1016/j.lfs.2004.08.016

    Article  CAS  PubMed  Google Scholar 

  13. Peliciari-Garcia RA, Zanquetta MM, Andrade-Silva J, Gomes DA, Barreto-Chaves ML, Cipolla-Neto J (2011) Expression of circadian clock and melatonin receptors within cultured rat cardiomyocytes. Chronobiol Int 28(1):21–30. https://doi.org/10.3109/07420528.2010.525675

    Article  CAS  PubMed  Google Scholar 

  14. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278. https://doi.org/10.1111/jpi.12360

    Article  CAS  PubMed  Google Scholar 

  15. Dhanabalan K, Mzezewa S, Huisamen B, Lochner A (2020) Mitochondrial oxidative phosphorylation function and mitophagy in ischaemic/reperfused hearts from control and high-fat diet rats: effects of long-term melatonin treatment. Cardiovasc Drugs Ther 34(6):799–811. https://doi.org/10.1007/s10557-020-06997-9

    Article  CAS  PubMed  Google Scholar 

  16. Yu LM, Dong X, Xue XD, Xu S, Zhang X, Xu YL, Wang ZS, Wang Y, Gao H, Liang YX, Yang Y, Wang HS (2021) Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia–reperfusion injury by improving mitochondrial quality control: Role of SIRT6. J Pineal Res 70(1):e12698. https://doi.org/10.1111/jpi.12698

    Article  CAS  PubMed  Google Scholar 

  17. Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y (2018) Protective role of melatonin in cardiac ischemia–reperfusion injury: from pathogenesis to targeted therapy. J Pineal Res. https://doi.org/10.1111/jpi.12471

    Article  PubMed  Google Scholar 

  18. Ma S, Dong Z (2019) Melatonin attenuates cardiac reperfusion stress by improving OPA1-related mitochondrial fusion in a yap-hippo pathway-dependent manner. J Cardiovasc Pharmacol 73(1):27–39. https://doi.org/10.1097/FJC.0000000000000626

    Article  CAS  PubMed  Google Scholar 

  19. Zhou H, Toan S, Zhu P, Wang J, Ren J, Zhang Y (2020) DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis. Basic Res Cardiol 115(2):11. https://doi.org/10.1007/s00395-019-0773-7

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Zhou H (2020) Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia–reperfusion injury. Acta Pharm Sin B 10(10):1866–1879. https://doi.org/10.1016/j.apsb.2020.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Toan S, Zhou H (2020) Mitochondrial quality control in cardiac microvascular ischemia–reperfusion injury: new insights into the mechanisms and therapeutic potentials. Pharmacol Res 156:104771. https://doi.org/10.1016/j.phrs.2020.104771

    Article  CAS  PubMed  Google Scholar 

  22. Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A (2011) Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res 50(2):171–182. https://doi.org/10.1111/j.1600-079X.2010.00826.x

    Article  CAS  PubMed  Google Scholar 

  23. Nduhirabandi F, Huisamen B, Strijdom H, Blackhurst D, Lochner A (2014) Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. J Pineal Res 57(3):317–332. https://doi.org/10.1111/jpi.12171

    Article  CAS  PubMed  Google Scholar 

  24. Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2011) Effects of estrogen in preventing neuronal insulin resistance in hippocampus of obese rats are different between genders. Life Sci 89(19–20):702–707. https://doi.org/10.1016/j.lfs.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  25. Apaijai N, Jinawong K, Singhanat K, Jaiwongkam T, Kerdphoo S, Chattipakorn SC, Chattipakorn N (2021) Necrostatin-1 reduces cardiac and mitochondrial dysfunction in prediabetic rats. J Endocrinol 251(1):27–39. https://doi.org/10.1530/joe-21-0134

    Article  CAS  PubMed  Google Scholar 

  26. Apaijai N, Pintana H, Chattipakorn SC, Chattipakorn N (2013) Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats. Br J Pharmacol 169(5):1048–1057. https://doi.org/10.1111/bph.12176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morel O, Perret T, Delarche N, Labeque JN, Jouve B, Elbaz M, Piot C, Ovize M (2012) Pharmacological approaches to reperfusion therapy. Cardiovasc Res 94(2):246–252. https://doi.org/10.1093/cvr/cvs114

    Article  CAS  PubMed  Google Scholar 

  28. Sahna E, Parlakpinar H, Turkoz Y, Acet A (2005) Protective effects of melatonin on myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol Res 54(5):491–495

    CAS  PubMed  Google Scholar 

  29. Ishihara R, Barros MP, Silva CMD, Borges LDS, Hatanaka E, Lambertucci RH (2021) Melatonin improves the antioxidant capacity in cardiac tissue of Wistar rats after exhaustive exercise. Free Radic Res 55(7):776–791. https://doi.org/10.1080/10715762.2021.1939024

    Article  CAS  PubMed  Google Scholar 

  30. Surinkaew S, Kumphune S, Chattipakorn S, Chattipakorn N (2013) Inhibition of p38 MAPK during ischemia, but not reperfusion, effectively attenuates fatal arrhythmia in ischemia/reperfusion heart. J Cardiovasc Pharmacol 61(2):133–141. https://doi.org/10.1097/FJC.0b013e318279b7b1

    Article  CAS  PubMed  Google Scholar 

  31. Curtis MJ, Hancox JC, Farkas A, Wainwright CL, Stables CL, Saint DA, Clements-Jewery H, Lambiase PD, Billman GE, Janse MJ, Pugsley MK, Ng GA, Roden DM, Camm AJ, Walker MJ (2013) The Lambeth Conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 139(2):213–248. https://doi.org/10.1016/j.pharmthera.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  32. Walker MJ, Curtis MJ, Hearse DJ, Campbell RW, Janse MJ, Yellon DM, Cobbe SM, Coker SJ, Harness JB, Harron DW et al (1988) The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res 22(7):447–455. https://doi.org/10.1093/cvr/22.7.447

    Article  CAS  PubMed  Google Scholar 

  33. Thummasorn S, Kumfu S, Chattipakorn S, Chattipakorn N (2011) Granulocyte-colony stimulating factor attenuates mitochondrial dysfunction induced by oxidative stress in cardiac mitochondria. Mitochondrion 11(3):457–466. https://doi.org/10.1016/j.mito.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  34. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6. https://doi.org/10.1016/j.freeradbiomed.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  35. Swift LM, Sarvazyan N (2000) Localization of dichlorofluorescin in cardiac myocytes: implications for assessment of oxidative stress. Am J Physiol Heart Circ Physiol 278(3):H982-990. https://doi.org/10.1152/ajpheart.2000.278.3.H982

    Article  CAS  PubMed  Google Scholar 

  36. Katrukha IA, Katrukha AG (2021) Myocardial injury and the release of troponins I and T in the blood of patients. Clin Chem 67(1):124–130. https://doi.org/10.1093/clinchem/hvaa281

    Article  PubMed  Google Scholar 

  37. Ying L, Benjanuwattra J, Chattipakorn SC, Chattipakorn N (2021) The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia–reperfusion injury. Acta Physiol (Oxf) 231(2):e13541. https://doi.org/10.1111/apha.13541

    Article  CAS  Google Scholar 

  38. Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y (2018) Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia–reperfusion injury. J Pineal Res 65(3):e12503. https://doi.org/10.1111/jpi.12503

    Article  CAS  PubMed  Google Scholar 

  39. Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu M, Shi Z, Mu N, Yu L, Ma H (2018) Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol 125:185–194. https://doi.org/10.1016/j.yjmcc.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  40. Mao K, Luo P, Geng W, Xu J, Liao Y, Zhong H, Ma P, Tan Q, Xia H, Duan L, Song S, Long D, Liu Y, Yang T, Wu Y, Jin Y (2021) An integrative transcriptomic and metabolomic study revealed that melatonin plays a protective role in chronic lung inflammation by reducing necroptosis. Front Immunol 12:668002. https://doi.org/10.3389/fimmu.2021.668002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou H, Zhu P, Guo J, Hu N, Wang S, Li D, Hu S, Ren J, Cao F, Chen Y (2017) Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol 13:498–507. https://doi.org/10.1016/j.redox.2017.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lochner A, Marais E, Huisamen B (2018) Melatonin and cardioprotection against ischaemia/reperfusion injury: What’s new? A review. J Pineal Res 65(1):e12490. https://doi.org/10.1111/jpi.12490

    Article  CAS  PubMed  Google Scholar 

  43. Yu L, Li B, Zhang M, Jin Z, Duan W, Zhao G, Yang Y, Liu Z, Chen W, Wang S, Yang J, Yi D, Liu J, Yu S (2016) Melatonin reduces PERK-eIF2α-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia–reperfusion injury: role of RISK and SAFE pathways interaction. Apoptosis 21(7):809–824. https://doi.org/10.1007/s10495-016-1246-1

    Article  CAS  PubMed  Google Scholar 

  44. Yu L, Liang H, Lu Z, Zhao G, Zhai M, Yang Y, Yang J, Yi D, Chen W, Wang X, Duan W, Jin Z, Yu S (2015) Membrane receptor-dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia–reperfusion injury: in vivo and in vitro studies. J Pineal Res 59(4):420–433. https://doi.org/10.1111/jpi.12272

    Article  CAS  PubMed  Google Scholar 

  45. Tomás-Zapico C, Coto-Montes A (2005) A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 39(2):99–104. https://doi.org/10.1111/j.1600-079X.2005.00248.x

    Article  CAS  PubMed  Google Scholar 

  46. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12. https://doi.org/10.1002/path.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou H, Ren J, Toan S, Mui D (2021) Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside. Ageing Res Rev 66:101250. https://doi.org/10.1016/j.arr.2020.101250

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Toan S, Zhou H (2020) New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 23(3):299–314. https://doi.org/10.1007/s10456-020-09720-2

    Article  CAS  PubMed  Google Scholar 

  49. Maneechote C, Palee S, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N (2021) Modulating mitochondrial dynamics attenuates cardiac ischemia–reperfusion injury in prediabetic rats. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-021-00626-3

    Article  PubMed  Google Scholar 

  50. Maneechote C, Palee S, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N (2020) Pharmacological inhibition of mitochondrial fission attenuates cardiac ischemia–reperfusion injury in pre-diabetic rats. Biochem Pharmacol 182:114295. https://doi.org/10.1016/j.bcp.2020.114295

    Article  CAS  PubMed  Google Scholar 

  51. Michela P, Velia V, Aldo P, Ada P (2015) Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768:71–76. https://doi.org/10.1016/j.ejphar.2015.10.030

    Article  CAS  PubMed  Google Scholar 

  52. Benova T, Viczenczova C, Radosinska J, Bacova B, Knezl V, Dosenko V, Weismann P, Zeman M, Navarova J, Tribulova N (2013) Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can J Physiol Pharmacol 91(8):633–639. https://doi.org/10.1139/cjpp-2012-0393

    Article  CAS  PubMed  Google Scholar 

  53. Diez ER, Prados LV, Carrión A, Ponce ZA, Miatello RM (2009) A novel electrophysiologic effect of melatonin on ischemia/reperfusion-induced arrhythmias in isolated rat hearts. J Pineal Res 46(2):155–160. https://doi.org/10.1111/j.1600-079X.2008.00643.x

    Article  CAS  PubMed  Google Scholar 

  54. Diez ER, Renna NF, Prado NJ, Lembo C, Ponce Zumino AZ, Vazquez-Prieto M, Miatello RM (2013) Melatonin, given at the time of reperfusion, prevents ventricular arrhythmias in isolated hearts from fructose-fed rats and spontaneously hypertensive rats. J Pineal Res 55(2):166–173. https://doi.org/10.1111/jpi.12059

    Article  CAS  PubMed  Google Scholar 

  55. Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH (1998) Ischemia/reperfusion-induced arrhythmias in the isolated rat heart: prevention by melatonin. J Pineal Res 25(3):184–191. https://doi.org/10.1111/j.1600-079x.1998.tb00558.x

    Article  CAS  PubMed  Google Scholar 

  56. Prado NJ, Egan Beňová T, Diez ER, Knezl V, Lipták B, Ponce Zumino AZ, Llamedo-Soria M, Szeiffová Bačová B, Miatello RM, Tribulová N (2019) Melatonin receptor activation protects against low potassium-induced ventricular fibrillation by preserving action potentials and connexin-43 topology in isolated rat hearts. J Pineal Res 67(4):e12605. https://doi.org/10.1111/jpi.12605

    Article  CAS  PubMed  Google Scholar 

  57. Hausenloy DJ, Yellon DM (2016) Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 13(4):193–209. https://doi.org/10.1038/nrcardio.2016.5

    Article  CAS  PubMed  Google Scholar 

  58. Pickard JM, Davidson SM, Hausenloy DJ, Yellon DM (2016) Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic Res Cardiol 111(4):50. https://doi.org/10.1007/s00395-016-0568-z

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gul-Kahraman K, Yilmaz-Bozoglan M, Sahna E (2019) Physiological and pharmacological effects of melatonin on remote ischemic perconditioning after myocardial ischemia–reperfusion injury in rats: Role of Cybb, Fas, NfκB, Irisin signaling pathway. J Pineal Res 67(2):e12589. https://doi.org/10.1111/jpi.12589

    Article  CAS  PubMed  Google Scholar 

  60. Aslan G, Gül HF, Tektemur A, Sahna E (2020) Ischemic postconditioning reduced myocardial ischemia–reperfusion injury: the roles of melatonin and uncoupling protein 3. Anatol J Cardiol 23(1):19–27. https://doi.org/10.14744/AnatolJCardiol.2019.72609

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the NSTDA Research Chair grant from the National Science and Technology Development Agency Thailand (NC); the Senior Research Scholar grant from the National Research Council of Thailand (SCC); the Thailand Research Fund Royal Golden Jubilee PhD Program PHD/0107/2560 (KS and NC); the National Research Council of Thailand (N41A640112 to NA); and the Chiang Mai University Center of Excellence Award (NC).

Author information

Authors and Affiliations

Authors

Contributions

SCC and NC: conception; KS, NA, NS, CM, BA, and TJ: data collection; KS, NA, SCC, and NC: data analysis; KS and NA: drafting of the manuscript; SCC and NC: revision of the manuscript and final approval.

Corresponding author

Correspondence to Nipon Chattipakorn.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

All animal experiments followed the NIH guidelines and were authorized by Chiang Mai University’s Institutional Animal Care and Use Committee (approval no. 2563/RT-0004).

Consent for publication

All the authors have approved and agreed to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhanat, K., Apaijai, N., Sumneang, N. et al. Therapeutic potential of a single-dose melatonin in the attenuation of cardiac ischemia/reperfusion injury in prediabetic obese rats. Cell. Mol. Life Sci. 79, 300 (2022). https://doi.org/10.1007/s00018-022-04330-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04330-1

Keywords

Navigation