Skip to main content

Advertisement

Log in

Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All the data and material analyzed in this research are included in this article and its supplementary files.

References

  1. Wright TJ et al (2003) Expression of mouse fibroblast growth factor and fibroblast growth factor receptor genes during early inner ear development. Dev Dyn 228(2):267–272

    CAS  PubMed  Google Scholar 

  2. LeMasurier M, Gillespie PG (2005) Hair-cell mechanotransduction and cochlear amplification. Neuron 48(3):403–415

    CAS  PubMed  Google Scholar 

  3. Atkinson PJ et al (2015) Sensory hair cell development and regeneration: similarities and differences. Development 142(9):1561–1571

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Burns JC et al (2012) In vivo proliferative regeneration of balance hair cells in newborn mice. J Neurosci 32(19):6570–6577

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Raft S et al (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134(24):4405–4415

    CAS  PubMed  Google Scholar 

  6. Goutman JD, Elgoyhen AB, Gómez-Casati ME (2015) Cochlear hair cells: the sound-sensing machines. FEBS Lett 589(22):3354–3361

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim KX, Fettiplace R (2013) Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins. J Gen Physiol 141(1):141–148

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fettiplace R (2017) Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea. Compr Physiol 7(4):1197–1227

    PubMed  PubMed Central  Google Scholar 

  9. Huang LC et al (2007) Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 134(16):2925–2933

    CAS  PubMed  Google Scholar 

  10. Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94(3):951–986

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Maoiléidigh DÓ, Ricci AJ (2019) A bundle of mechanisms: inner-ear hair-cell mechanotransduction. Trends Neurosci 42(3):221–236

    PubMed Central  Google Scholar 

  12. Sun S et al (2018) Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. Cell 174(5):1247-1263.e15

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mikaelian D, Ruben RJ (1965) Development of hearing in the normal Cba-J mouse: correlation of physiological observations with behavioral responses and with cochlear anatomy. Acta Otolaryngol 59(2–6):451–461

    Google Scholar 

  14. Samarajeewa A et al (2018) Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea. Development. https://doi.org/10.1242/dev.166579

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang T et al (2015) Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 6:6613

    CAS  PubMed  Google Scholar 

  16. Shu Y et al (2019) Renewed proliferation in adult mouse cochlea and regeneration of hair cells. Nat Commun 10(1):5530–5530

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kelley MW (2006) Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7(11):837–849

    CAS  PubMed  Google Scholar 

  18. Wu J et al (2016) Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles. Sci Rep 6:29418

    PubMed  PubMed Central  Google Scholar 

  19. Kiernan AE (2013) Notch signaling during cell fate determination in the inner ear. Semin Cell Dev Biol 24(5):470–479

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang D et al (2016) miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells. Int J Mol Med 38(5):1367–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li H, Kloosterman W, Fekete DM (2010) MicroRNA-183 family members regulate sensorineural fates in the inner ear. J Neurosci 30(9):3254–3263

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Borghesan M et al (2019) Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep 27(13):3956-3971.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang C et al (2020) Mesenchymal stromal cell-derived small extracellular vesicles induce ischemic neuroprotection by modulating leukocytes and specifically neutrophils. Stroke 51(6):1825–1834

    CAS  PubMed  Google Scholar 

  24. Loyer X et al (2018) Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res 123(1):100–106

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514

    CAS  PubMed  Google Scholar 

  26. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25(6):364–372

    CAS  PubMed  Google Scholar 

  27. Chen IH et al (2017) Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci USA 114(12):3175–3180

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Z et al (2018) Exosome-mediated miR-200b promotes colorectal cancer proliferation upon TGF-β1 exposure. Biomed Pharmacother 106:1135–1143

    CAS  PubMed  Google Scholar 

  29. Liao FL et al (2018) Hematopoietic stem cell-derived exosomes promote hematopoietic differentiation of mouse embryonic stem cells in vitro via inhibiting the miR126/Notch1 pathway. Acta Pharmacol Sin 39(4):552–560

    CAS  PubMed  Google Scholar 

  30. Guo L et al (2019) Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med 8(12):5687–5701

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma P, Schiapparelli L, Cline HT (2013) Exosomes function in cell–cell communication during brain circuit development. Curr Opin Neurobiol 23(6):997–1004

    CAS  PubMed  Google Scholar 

  32. McGough IJ, Vincent JP (2016) Exosomes in developmental signalling. Development 143(14):2482–2493

    CAS  PubMed  Google Scholar 

  33. Breglio AM et al (2020) Exosomes mediate sensory hair cell protection in the inner ear. J Clin Investig 130(5):2657–2672

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Men Y et al (2019) Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun 10(1):4136

    PubMed  PubMed Central  Google Scholar 

  35. Lai R et al (2020) Exosomes derived from mouse inner ear stem cells attenuate gentamicin-induced ototoxicity in vitro through the miR-182-5p/FOXO3 axis. J Tissue Eng Regen Med 14(8):1149–1156

    CAS  PubMed  Google Scholar 

  36. Crewe C et al (2018) An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175(3):695-708.e13

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang N et al (2017) Exosomes mediate epithelium-mesenchyme crosstalk in organ development. ACS Nano 11(8):7736–7746

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang S et al (2020) Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Cell Mol Life Sci 77(7):1401–1419

    CAS  PubMed  Google Scholar 

  39. Vlachos IS et al (2015) DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43(Database issue):D153–D159

    CAS  PubMed  Google Scholar 

  40. Vlachos IS et al (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun J et al (2021) Synergistically bifunctional paramagnetic separation enables efficient isolation of urine extracellular vesicles and downstream phosphoproteomic analysis. ACS Appl Mater Interfaces 13(3):3622–3630

    CAS  PubMed  Google Scholar 

  42. Zhang Y et al (2021) Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles 10(5):e12073

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jing H et al (2020) miR-381-abundant small extracellular vesicles derived from kartogenin-preconditioned mesenchymal stem cells promote chondrogenesis of MSCs by targeting TAOK1. Biomaterials 231:119682

    CAS  PubMed  Google Scholar 

  44. Chen G et al (2020) Hypoxia-induced let-7f-5p/TARBP2 feedback loop regulates osteosarcoma cell proliferation and invasion by inhibiting the Wnt signaling pathway. Aging (Albany NY) 12(8):6891–6903

    CAS  Google Scholar 

  45. Handgraaf S et al (2020) Let-7e-5p regulates GLP-1 content and basal release from enteroendocrine L cells from DIO male mice. Endocrinology 161(2)

  46. Wu Y et al (2020) Circular RNA circCORO1C promotes laryngeal squamous cell carcinoma progression by modulating the let-7c-5p/PBX3 axis. Mol Cancer 19(1):99. https://doi.org/10.1186/s12943-020-01215-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qu F et al (2021) LncRNA HOXA-AS3 promotes gastric cancer progression by regulating miR-29a-3p/LTβR and activating NF-κB signaling. Cancer Cell Int 21(1):118

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tu Z et al (2019) Loss of miR-146b-5p promotes T cell acute lymphoblastic leukemia migration and invasion via the IL-17A pathway. J Cell Biochem 120(4):5936–5948

    CAS  PubMed  Google Scholar 

  49. Suzuki A et al (2019) MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse. BMC Genom 20(1):852

    Google Scholar 

  50. Zhang R et al (2019) MicroRNA-338-3p suppresses ovarian cancer cells growth and metastasis: implication of Wnt/catenin beta and MEK/ERK signaling pathways. J Exp Clin Cancer Res 38(1):494

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hou G et al (2021) LncRNA GAS6-AS2 promotes non-small-cell lung cancer cell proliferation via regulating miR-144-3p/ MAPK6 axis. Cell Cycle 20(2):179–193

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang J, Wang N, Xu A (2019) miR-10b-3p, miR-8112 and let-7j as potential biomarkers for autoimmune inner ear diseases. Mol Med Rep 20(1):171–181

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ni Z et al (2019) The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis 10(7):522

    PubMed  PubMed Central  Google Scholar 

  54. Zhang LS et al (2019) Identification of altered microRNAs in retinas of mice with oxygen-induced retinopathy. Int J Ophthalmol 12(5):739–745

    PubMed  PubMed Central  Google Scholar 

  55. Tang B et al (2020) Small RNA sequencing reveals exosomal miRNAs involved in the treatment of asthma by scorpio and centipede. Biomed Res Int 2020:1061407

    PubMed  PubMed Central  Google Scholar 

  56. Tang CT et al (2018) RAB31 targeted by MiR-30c-2-3p regulates the GLI1 signaling pathway, affecting gastric cancer cell proliferation and apoptosis. Front Oncol 8:554

    PubMed  PubMed Central  Google Scholar 

  57. Tagne JB et al (2015) Transcription factor and microRNA interactions in lung cells: an inhibitory link between NK2 homeobox 1, miR-200c and the developmental and oncogenic factors Nfib and Myb. Respir Res 16(1):22

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xia Y et al (2019) lncRNA NEAT1 facilitates melanoma cell proliferation, migration, and invasion via regulating miR-495-3p and E2F3. J Cell Physiol 234(11):19592–19601

    CAS  PubMed  Google Scholar 

  59. Dou D et al (2021) Circ_0008039 supports breast cancer cell proliferation, migration, invasion, and glycolysis by regulating the miR-140-3p/SKA2 axis. Mol Oncol 15(2):697–709

    CAS  PubMed  Google Scholar 

  60. Qiu WI et al (2016) Effect of Xiaoai Jiedu recipe on mIRNA expression profiles in H22 tumor-bearing mice. Zhongguo Zhong Xi Yi Jie He Za Zhi 36(9):1112–1118

    PubMed  Google Scholar 

  61. Meyer SU et al (2015) Integrative analysis of microRNA and mRNA data reveals an orchestrated function of microRNAs in skeletal myocyte differentiation in response to TNF-α or IGF1. PLoS ONE 10(8):e0135284

    PubMed  PubMed Central  Google Scholar 

  62. Liu X et al (2019) MiR-409-3p and MiR-1896 co-operatively participate in IL-17-induced inflammatory cytokine production in astrocytes and pathogenesis of EAE mice via targeting SOCS3/STAT3 signaling. Glia 67(1):101–112

    PubMed  Google Scholar 

  63. Eom TY et al (2020) Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun 11(1):912

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu X et al (2019) Regulatory mechanism of miR-543-3p on GLT-1 in a mouse model of Parkinson’s disease. ACS Chem Neurosci 10(3):1791–1800

    CAS  PubMed  Google Scholar 

  65. Gässler A et al (2020) Overexpression of Gjb4 impairs cell proliferation and insulin secretion in primary islet cells. Mol Metab 41:101042

    PubMed  PubMed Central  Google Scholar 

  66. Liu T, Guo J, Zhang X (2019) MiR-202-5p/PTEN mediates doxorubicin-resistance of breast cancer cells via PI3K/Akt signaling pathway. Cancer Biol Ther 20(7):989–998

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Galleggiante V et al (2019) Quercetin-induced miR-369-3p suppresses chronic inflammatory response targeting C/EBP-β. Mol Nutr Food Res 63(19):e1801390

    PubMed  Google Scholar 

  68. Li Q et al (2020) Circular RNA circ-0016068 promotes the growth, migration, and invasion of prostate cancer cells by regulating the miR-330-3p/BMI-1 axis as a competing endogenous RNA. Front Cell Dev Biol 8:827

    PubMed  PubMed Central  Google Scholar 

  69. Gao X et al (2020) Pulmonary silicosis alters microRNA expression in rat lung and miR-411-3p exerts anti-fibrotic effects by inhibiting MRTF-A/SRF signaling. Mol Ther Nucleic Acids 20:851–865

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gu X, Yao X, Liu D (2020) Up-regulation of microRNA-335-5p reduces inflammation via negative regulation of the TPX2-mediated AKT/GSK3β signaling pathway in a chronic rhinosinusitis mouse model. Cell Signal 70:109596

    CAS  PubMed  Google Scholar 

  71. Kim KS et al (2019) ELK3 expressed in lymphatic endothelial cells promotes breast cancer progression and metastasis through exosomal miRNAs. Sci Rep 9(1):8418

    PubMed  PubMed Central  Google Scholar 

  72. Jee YH et al (2018) mir-374-5p, mir-379-5p, and mir-503-5p regulate proliferation and hypertrophic differentiation of growth plate chondrocytes in male rats. Endocrinology 159(3):1469–1478

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Munnamalai V, Fekete DM (2013) Wnt signaling during cochlear development. Semin Cell Dev Biol 24(5):480–489

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Riccomagno MM, Takada S, Epstein DJ (2005) Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 19(13):1612–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Eguchi T et al (2020) Cell stress induced stressome release including damaged membrane vesicles and extracellular HSP90 by prostate cancer cells. Cells 9(3)

  76. Štok U et al (2020) Characterization of plasma-derived small extracellular vesicles indicates ongoing endothelial and platelet activation in patients with thrombotic antiphospholipid syndrome. Cells. https://doi.org/10.3390/cells9051211

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wong EHC et al (2018) Inner ear exosomes and their potential use as biomarkers. PLoS ONE 13(6):e0198029. https://doi.org/10.1371/journal.pone.0198029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Crescitelli R et al (2020) Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles 9(1):1722433–1722433

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang Y et al (2020) Influence of species and processing parameters on recovery and content of brain tissue-derived extracellular vesicles. J Extracell Vesicles 9(1):1785746–1785746

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vella LJ et al (2017) A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles 6(1):1348885

    PubMed  PubMed Central  Google Scholar 

  81. Muraoka S et al (2020) Proteomic and biological profiling of extracellular vesicles from Alzheimer’s disease human brain tissues. Alzheimers Dement 16(6):896–907

    PubMed  PubMed Central  Google Scholar 

  82. Gallart-Palau X, Serra A, Sze SK (2016) Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol Neurodegener 11(1):41

    PubMed  PubMed Central  Google Scholar 

  83. Perez-Gonzalez R et al (2012) The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 287(51):43108–43115

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wan S et al (2018) CD8α(+)CD11c(+) extracellular vesicles in the lungs control immune homeostasis of the respiratory tract via TGF-β1 and IL-10. J Immunol 200(5):1651–1660

    CAS  PubMed  Google Scholar 

  85. Crescitelli R, Lässer C, Lötvall J (2021) Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc 16(3):1548–1580

    CAS  PubMed  Google Scholar 

  86. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478)

  87. Mensà E et al (2020) Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J Extracell Vesicles 9(1):1725285. https://doi.org/10.1080/20013078.2020.1725285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang H et al (2020) BMMSC-sEV-derived miR-328a-3p promotes ECM remodeling of damaged urethral sphincters via the Sirt7/TGFβ signaling pathway. Stem Cell Res Ther 11(1):286

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lv J et al (2018) MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation. Brain Res 1685:91–104

    CAS  PubMed  Google Scholar 

  90. Mathew LK et al (2014) Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2α activity. Cancer Discov 4(1):53–60

    CAS  PubMed  Google Scholar 

  91. Cai J et al (2019) Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol 316(5):C731-c740

    CAS  PubMed  Google Scholar 

  92. Zhou J et al (2018) Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res 6(12):1578–1592

    CAS  PubMed  Google Scholar 

  93. Zhong Q et al (2020) Long non-coding RNA TUG1 modulates expression of elastin to relieve bronchopulmonary dysplasia via sponging miR-29a-3p. Front Pediatr 8:573099

    PubMed  PubMed Central  Google Scholar 

  94. Song Q et al (2020) Long non-coding RNA LINC00473 acts as a microRNA-29a-3p sponge to promote hepatocellular carcinoma development by activating Robo1-dependent PI3K/AKT/mTOR signaling pathway. Ther Adv Med Oncol 12:1758835920937890

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Le LT et al (2016) The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl) 94(5):583–596

    CAS  Google Scholar 

  96. Servage KA et al (2020) Proteomic profiling of small extracellular vesicles secreted by human pancreatic cancer cells implicated in cellular transformation. Sci Rep 10(1):7713

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vinik Y et al (2020) Proteomic analysis of circulating extracellular vesicles identifies potential markers of breast cancer progression, recurrence, and response. Sci Adv 6(40)

  98. Sinning A, Liebmann L, Hübner CA (2015) Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity. Front Cell Neurosci 9:223

    PubMed  PubMed Central  Google Scholar 

  99. Atkin G et al (2015) Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity. J Neurosci 35(15):6165–6178. https://doi.org/10.1523/JNEUROSCI.3013-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nelson RF et al (2007) Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci 27(19):5163–5171

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yamada T et al (2017) Toll-like receptor ligands induce cytokine and chemokine production in human inner ear endolymphatic sac fibroblasts. Auris Nasus Larynx 44(4):398–403

    PubMed  Google Scholar 

  102. Gollmann-Tepeköylü C et al (2020) Shock waves promote spinal cord repair via TLR3. JCI Insight 5(15)

  103. Huebner AK et al (2019) Early hearing loss upon disruption of Slc4a10 in C57BL/6 mice. J Assoc Res Otolaryngol 20(3):233–245. https://doi.org/10.1007/s10162-019-00719-1

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sun S et al (2019) Solute carrier family 4 member 1 might participate in the pathogenesis of Meniere’s disease in a murine endolymphatic hydrop model. Acta Otolaryngol 139(11):966–976

    CAS  PubMed  Google Scholar 

  105. Chen EB et al (2019) HnRNPR-CCNB1/CENPF axis contributes to gastric cancer proliferation and metastasis. Aging (Albany NY) 11(18):7473–7491

    CAS  Google Scholar 

  106. Du C et al (2017) DDX5 promotes gastric cancer cell proliferation in vitro and in vivo through mTOR signaling pathway. Sci Rep 7:42876

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Jia R et al (2019) Oncogenic splicing factor SRSF3 regulates ILF3 alternative splicing to promote cancer cell proliferation and transformation. RNA 25(5):630–644

    PubMed  PubMed Central  Google Scholar 

  108. Liu BW et al (2019) Oncoprotein HBXIP induces PKM2 via transcription factor E2F1 to promote cell proliferation in ER-positive breast cancer. Acta Pharmacol Sin 40(4):530–538

    CAS  PubMed  Google Scholar 

  109. Li Y et al (2018) PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteasomal degradation. Cancer Lett 430:109–122

    CAS  PubMed  Google Scholar 

  110. Zheng W et al (2019) DDB1 regulates sertoli cell proliferation and testis cord remodeling by TGFβ pathway. Genes (Basel) 10(12)

  111. Xu N et al (2020) CHD4 mediates proliferation and migration of non-small cell lung cancer via the RhoA/ROCK pathway by regulating PHF5A. BMC Cancer 20(1):262. https://doi.org/10.1186/s12885-020-06762-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mokabber H, Najafzadeh N, Mohammadzadeh Vardin M (2019) miR-124 promotes neural differentiation in mouse bulge stem cells by repressing Ptbp1 and Sox9. J Cell Physiol 234(6):8941–8950

    CAS  PubMed  Google Scholar 

  113. Hirota A et al (2019) The nucleosome remodeling and deacetylase complex protein CHD4 regulates neural differentiation of mouse embryonic stem cells by down-regulating p53. J Biol Chem 294(1):195–209

    CAS  PubMed  Google Scholar 

  114. Hong S et al (2016) RuvB-like protein 2 (Ruvbl2) has a role in directing the neuroectodermal differentiation of mouse embryonic stem cells. Stem Cells Dev 25(18):1376–1385

    CAS  PubMed  Google Scholar 

  115. Liu L et al (2012) Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis. Cell Res 22(8):1258–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim IM et al (2005) The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature. J Biol Chem 280(23):22278–22286

    CAS  PubMed  Google Scholar 

  117. Pokidysheva E et al (2013) Prolyl 3-hydroxylase-1 null mice exhibit hearing impairment and abnormal morphology of the middle ear bone joints. Matrix Biol 32(1):39–44

    CAS  PubMed  Google Scholar 

  118. Forge A et al (2017) Disruption of SorCS2 reveals differences in the regulation of stereociliary bundle formation between hair cell types in the inner ear. PLoS Genet 13(3):e1006692

    PubMed  PubMed Central  Google Scholar 

  119. Abitbol JM et al (2016) Differential effects of pannexins on noise-induced hearing loss. Biochem J 473(24):4665–4680

    CAS  PubMed  Google Scholar 

  120. Abitbol JM et al (2019) Double deletion of Panx1 and Panx3 affects skin and bone but not hearing. J Mol Med (Berl) 97(5):723–736

    CAS  Google Scholar 

  121. Kim YR et al (2017) Expression patterns of members of the isocitrate dehydrogenase gene family in murine inner ear. Biotechnol Histochem 92(7):536–544

    Google Scholar 

  122. Meyerzum Gottesberge AM (2005) Felix H, Abnormal basement membrane in the inner ear and the kidney of the Mpv17−/− mouse strain: ultrastructural and immunohistochemical investigations. Histochem Cell Biol 124(6):507–516

    CAS  Google Scholar 

  123. Tadros SF et al (2014) Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits. PLoS ONE 9(2):e90279

    PubMed  PubMed Central  Google Scholar 

  124. Kearney G et al (2019) Developmental synaptic changes at the transient olivocochlear-inner hair cell synapse. J Neurosci 39(18):3360–3375

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Michanski S et al (2019) Mapping developmental maturation of inner hair cell ribbon synapses in the apical mouse cochlea. Proc Natl Acad Sci USA 116(13):6415–6424

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhao J et al (2020) Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY) 12(7):5590–5611

    CAS  Google Scholar 

  127. Nagashima R et al (2011) Acoustic overstimulation activates 5’-AMP-activated protein kinase through a temporary decrease in ATP level in the cochlear spiral ligament prior to permanent hearing loss in mice. Neurochem Int 59(6):812–820

    CAS  PubMed  Google Scholar 

  128. Fu X et al (2018) Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss. J Clin Investig 128(11):4938–4955

    PubMed  PubMed Central  Google Scholar 

  129. Leitmeyer K et al (2015) Inhibition of mTOR by rapamycin results in auditory hair cell damage and decreased spiral ganglion neuron outgrowth and neurite formation in vitro. Biomed Res Int 2015:925890

    PubMed  PubMed Central  Google Scholar 

  130. Bodmer D, Levano-Huaman S (2017) Sesn2/AMPK/mTOR signaling mediates balance between survival and apoptosis in sensory hair cells under stress. Cell Death Dis 8(10):e3068–e3068

    PubMed  PubMed Central  Google Scholar 

  131. Yao K, Qiu S, Tian L, Snider WD, Flannery JG, Schaffer DV, Chen B (2016) Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Rep 17(1):165–178. https://doi.org/10.1016/j.celrep.2016.08.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang W, Liu H, Liu W, Liu Y, Xu J (2015) Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-κB pathway. Cell Death Differ 22(2):287–297. https://doi.org/10.1038/cdd.2014.142

    Article  CAS  PubMed  Google Scholar 

  133. Chen PY, Qin L, Barnes C, Charisse K, Yi T, Zhang X, Ali R, Medina PP, Yu J, Slack FJ, Anderson DG (2012) FGF regulates TGF-β signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep 2(6):1684–1696. https://doi.org/10.1016/j.celrep.2012.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. You L, Chen H, Xu L, Li X (2020) Overexpression of miR-29a-3p suppresses proliferation, migration, and invasion of vascular smooth muscle cells in atherosclerosis via targeting TNFRSF1A. BioMed Res Int. https://doi.org/10.1155/2020/9627974

    Article  PubMed  PubMed Central  Google Scholar 

  135. Volpicelli F, Speranza L, Pulcrano S, De Gregorio R, Crispino M, De Sanctis C, Leopoldo M, Lacivita E, di Porzio U, Bellenchi GC, Perrone-Capano C (2019) The microRNA-29a modulates serotonin 5-HT7 receptor expression and its effects on hippocampal neuronal morphology. Mol Neurobiol 56(12):8617–8627. https://doi.org/10.1007/s12035-019-01690-x

    Article  CAS  PubMed  Google Scholar 

  136. Wang Y, Zhang D, Tang Z, Zhang Y, Gao H, Ni N, Shen B, Sun H, Gu P (2018) REST regulated by RA through miR-29a and the proteasome pathway plays a crucial role in RPC proliferation and differentiation. Cell Death Dis. https://doi.org/10.1038/s41419-018-0473-5

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL (2012) YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nature Cell Biol 14(12):1322–1329. https://doi.org/10.1038/ncb2615

    Article  CAS  PubMed  Google Scholar 

  138. Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, Mastick GS, Xu C, Yan W (2014) Two miRNA clusters miR-34b/c and miR-449 are essential for normal brain development motile ciliogenesis and spermatogenesis. Proceed Nat Acad Sci 111(28):E2851–E2857. https://doi.org/10.1073/pnas.1407777111

    Article  CAS  Google Scholar 

  139. Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C, Grønbæk K, Federspiel B, Lund AH, Friis-Hansen L (2011) miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Molecular Cancer. https://doi.org/10.1186/1476-4598-10-29

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hu F, Wang M, Xiao T, Yin B, He L, Meng W, Dong M, Liu F (2015) miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes 64(6):2056–2068. https://doi.org/10.2337/db14-1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hand NJ, Master ZR, Eauclaire SF, Weinblatt DE, Matthews RP, Friedman JR (2009) The microRNA-30 family is required for vertebrate hepatobiliary development. Gastroenterol 136(3):1081–1090. https://doi.org/10.1053/j.gastro.2008.12.006

    Article  CAS  Google Scholar 

  142. Liang T, Zhou B, Shi L, Wang H, Chu Q, Xu F, Li Y, Chen R, Shen C, Schinckel AP (2018) IncRNA AK017368 promotes proliferation and suppresses differentiation of myoblasts in skeletal muscle development by attenuating the function of miR-30c. FASEB J 32(1):377–389. https://doi.org/10.1096/fj.201700560rr

    Article  CAS  PubMed  Google Scholar 

  143. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Develop 24(10):992–1009. https://doi.org/10.1101/gad.1884710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database):D152–D157. https://doi.org/10.1093/nar/gkq1027

    Article  CAS  Google Scholar 

  145. Zhang Q, Liu H, McGee J, Walsh EJ, Soukup GA, He DZ (2013) Identifying microRNAs involved in degeneration of the organ of corti during age-related hearing loss. PLoS ONE 8(4): https://doi.org/10.1371/journal.pone.0062786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Krisher T, Bar-Shavit Z (2014) Regulation of osteoclastogenesis by integrated signals from toll-like receptors. J Cell Biochem 115(12):2146–2154. https://doi.org/10.1002/jcb.24891

    Article  CAS  PubMed  Google Scholar 

  147. Christensen IB, Wu Q, Bohlbro AS, Skals MG, Damkier HH, Hübner CA, Fenton RA, Praetorius J (2020) Genetic disruption of slc4a10 alters the capacity for cellular metabolism and vectorial ion transport in the choroid plexus epithelium. Fluids Barriers CNS. https://doi.org/10.1186/s12987-019-0162-5

    Article  PubMed  PubMed Central  Google Scholar 

  148. Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, Deloulme JC (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55(2):165–177. https://doi.org/10.1002/glia.20445

    Article  PubMed  PubMed Central  Google Scholar 

  149. Zeng X, Ye M, Resch JM, Jedrychowski MP, Hu B, Lowell BB, Ginty DD, Spiegelman BM (2019) Innervation of thermogenic adipose tissue via a calsyntenin 3β–S100b axis. Nature 569(7755):229–235. https://doi.org/10.1038/s41586-019-1156-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nishiyama H, Knöpfel T, Endo S, Itohara S (2002) Glial protein S100B modulates long-term neuronal synaptic plasticity. Proceed Nat Acad Sci 99(6):4037–4042. https://doi.org/10.1073/pnas.052020999

    Article  CAS  Google Scholar 

  151. Riuzzi F, Sorci G, Beccafico S, Donato R (2012) S100B engages RAGE or bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. Implications for Muscle Regeneration. PLoS ONE 7(1):e28700. https://doi.org/10.1371/journal.pone.0028700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Legrand J, Chan AL, La HM, Rossello FJ, Änkö ML, Fuller-Pace FV, Hobbs RM (2019) DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nature Commun. https://doi.org/10.1038/s41467-019-09972-7

    Article  Google Scholar 

  153. Dardenne E, Espinoza MP, Fattet L, Germann S, Lambert MP, Neil H, Zonta E, Mortada H, Gratadou L, Deygas M, Chakrama FZ (2014) RNA helicases DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing programs in cell differentiation. Cell Rep 7(6):1900–1913. https://doi.org/10.1016/j.celrep.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  154. Arun G, Akhade VS, Donakonda S, Rao MR (2012) mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Mol Cell Biol 32(15):3140–3152. https://doi.org/10.1128/MCB.00006-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tomofuji Y, Takaba H, Suzuki HI, Benlaribi R, Martinez CD, Abe Y, Morishita Y, Okamura T, Taguchi A, Kodama T, Takayanagi H (2020) Chd4 choreographs self-antigen expression for central immune tolerance. Nature Immunol 21(8):892–901. https://doi.org/10.1038/s41590-020-0717-2

    Article  CAS  Google Scholar 

  156. Sun F, Yang Q, Weng W, Zhang Y, Yu Y, Hong A, Ji Y, Pan Q (2013) Chd4 and associated proteins function as corepressors of Sox9 expression during BMP-2-induced chondrogenesis. J Bone Mineral Res 28(9):1950–1961. https://doi.org/10.1002/jbmr.1932

    Article  CAS  Google Scholar 

  157. Leloup N, Chataigner LM, Janssen BJ (2018) Structural insights into SorCS2–Nerve Growth Factor complex formation. Nature Commun. https://doi.org/10.1038/s41467-018-05405-z

    Article  Google Scholar 

  158. Malik AR, Szydlowska K, Nizinska K, Asaro A, van Vliet EA, Popp O, Dittmar G, Fritsche-Guenther R, Kirwan JA, Nykjaer A, Lukasiuk K, Aronica E, Willnow TE (2019) SorCS2 controls functional expression of amino acid transporter EAAT3 and protects neurons from oxidative stress and epilepsy-induced pathology. Cell Rep 26(10):2792–2804.e6. https://doi.org/10.1016/j.celrep.2019.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Itsumi M, Inoue S, Elia AJ, Murakami K, Sasaki M, Lind EF, Brenner D, Harris IS, Chio II, Afzal S, Cairns RA, Cescon DW, Elford AR, Ye J, Lang PA, Li WY, Wakeham A, Duncan GS, Haight J, You-Ten A, Snow B, Yamamoto K, Ohashi PS, Mak TW (2015) Idh1 protects murine hepatocytes from endotoxin-induced oxidative stress by regulating the intracellular NADP+/NADPH ratio. Cell Death Differ 22(11):1837–1845. https://doi.org/10.1038/cdd.2015.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, Tsoi J, Clark O, Oldrini B, Komisopoulou E, Kunii K, Pedraza A, Schalm S, Silverman L, Miller A, Wang F, Yang H, Chen Y, Kernytsky A, Rosenblum MK, Liu W, Biller SA, Su SM, Brennan CW, Chan TA, Graeber TG, Yen KE, Mellinghoff IK (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340(6132):626–630. https://doi.org/10.1126/science.1236062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ishikawa M, Iwamoto T, Fukumoto S, Yamada Y (2014) Pannexin 3 inhibits proliferation of osteoprogenitor cells by regulating Wnt and p21 signaling. J Biol Chemistry 289(5):2839–285. https://doi.org/10.1074/jbc.M113.523241

    Article  CAS  Google Scholar 

  162. Ruan QT, Yazdani N, Blum BC, Beierle JA, Lin W, Coelho MA, Fultz EK, Healy AF, Shahin JR, Kandola AK, Luttik KP, Zheng K, Smith NJ, Cheung J, Mortazavi F, Apicco DJ, Varman DR, Ramamoorthy S, Ash PEA, Rosene DL, Emili A, Wolozin B, Szumlinski KK, Bryant CD (2020) A mutation in Hnrnph1 that decreases methamphetamine-induced reinforcement, reward, and dopamine release and increases synaptosomal hnRNP H and mitochondrial proteins. J Neurosci 40(1):107–130. https://doi.org/10.1523/JNEUROSCI.1808-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Linares AJ, Lin CH, Damianov A, Adams KL, Novitch BG, Black DL (2015) The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. eLife. https://doi.org/10.7554/eLife.09268

    Article  PubMed  PubMed Central  Google Scholar 

  164. Georgilis A, Klotz S, Hanley CJ, Herranz N, Weirich B, Morancho B, Leote AC, D'Artista L, Gallage S, Seehawer M, Carroll T, Dharmalingam G, Wee KB, Mellone M, Pombo J, Heide D, Guccione E, Arribas J, Barbosa-Morais NL, Heikenwalder M, Thomas GJ, Zender L, Gil J (2018) PTBP1-mediated alternative splicing regulates the inflammatory secretome and the pro-tumorigenic effects of senescent cells. Cancer Cell 34(1):85–102.e9. https://doi.org/10.1016/j.ccell.2018.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Vuong JK, Lin CH, Zhang M, Chen L, Black DL, Zheng S (2016) PTBP1 and PTBP2 serve both specific and redundant functions in neuronal pre-mRNA splicing. Cell Rep 17(10):2766–2775. https://doi.org/10.1016/j.celrep.2016.11.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gorfu G, Virtanen I, Hukkanen M, Lehto VP, Rousselle P, Kenne E, Lindbom L, Kramer R, Tryggvason K, Patarroyo M (2008) Laminin isoforms of lymph nodes and predominant role of α5-laminin(s) in adhesion and migration of blood lymphocytes. J Leukoc Biol 84(3):701–712. https://doi.org/10.1189/jlb.0108048

    Article  CAS  PubMed  Google Scholar 

  167. Yang L, Chen W, Li L, Xiao Y, Fan S, Zhang Q, Xia T, Li M, Hong Y, Zhao T, Li Q, Liu W-H, Xiao N (2021) Ddb1 Is essential for the expansion of CD4+ helper T cells by regulating cell cycle progression and cell death. Frontiers Immunol. https://doi.org/10.3389/fimmu.2021.722273

    Article  Google Scholar 

  168. Gao J, Buckley SM, Cimmino L, Guillamot M, Strikoudis A, Cang Y, Goff SP, Aifantis I (2015) The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. eLife. https://doi.org/10.7554/eLife.07539

    Article  PubMed  PubMed Central  Google Scholar 

  169. Pan Y, Wang B, Yang X, Bai F, Xu Q, Li X, Gao L, Ma C, Liang X (2015) CUL4A facilitates hepatocarcinogenesis by promoting cell cycle progression and epithelial-mesenchymal transition. Sci Rep. https://doi.org/10.1038/srep17006

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kopanja D, Stoyanova T, Okur MN, Huang E, Bagchi S, Raychaudhuri P (2009) Proliferation defects and genome instability in cells lacking Cul4A. Oncogene 28(26):2456–2465. https://doi.org/10.1038/onc.2009.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Waning DL, Li B, Jia N, Naaldijk Y, Goebel WS, HogenEsch H, Chun KT (2008) Cul4A is required for hematopoietic cell viability and its deficiency leads to apoptosis. Blood 112(2):320–329. https://doi.org/10.1182/blood-2007-11-126300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fratzl-Zelman N, Bächinger HP, Vranka JA, Roschger P, Klaushofer K, Rauch F (2016) Bone matrix hypermineralization in prolyl-3 hydroxylase 1 deficient mice. Bone 85:15–22. https://doi.org/10.1016/j.bone.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  173. Pokidysheva E, Tufa S, Bresee C, Brigande JV, Bächinger HP (2013) Prolyl 3-hydroxylase-1 null mice exhibit hearing impairment and abnormal morphology of the middle ear bone joints. Matrix Biol 32(1):39–44. https://doi.org/10.1016/j.matbio.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  174. Vranka JA, Pokidysheva E, Hayashi L, Zientek K, Mizuno K, Ishikawa Y, Maddox K, Tufa S, Keene DR, Klein R, Bächinger HP (2010) Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J Biol Chem 285(22):17253–17262. https://doi.org/10.1074/jbc.M110.102228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Larcher JC, Gasmi L, Viranaïcken W, Eddé B, Bernard R, Ginzburg I, Denoulet P (2004) Ilf3 and NF90 associate with the axonal targeting element of Tau mRNA. FASEB J 18(14):1761–1763. https://doi.org/10.1096/fj.04-1763fje

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to all colleagues who contributed to this research.

Funding

This work was supported by grants from the National Key RD Program of China (nos. 2021YFA1101300, 2020YFA0112503), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16010303), the National Natural Science Foundation of China (nos. 82171149, 81970892, 82030029, 81970882), the Natural Science Foundation of Jiangsu Province (nos. BK20190062 and  BE2019711), the Science and Technology Department of Sichuan Province (no. 2021YFS0371), the Shenzhen Fundamental Research Program (no. JCYJ20190814093401920, JCYJ20210324125608022), Open Research Fund of State Key Laboratory of Genetic Engineering, Fudan University (No. SKLGE-2109), and the Fundamental Research Funds for the Central Universities for the Support Program of Zhishan Youth Scholars of Southeast University (no. 2242021R41136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Andy Tao, Shasha Zhang or Renjie Chai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

All animal studies followed the authorized guidelines of Southeast University's Animal Care and Use Committee and the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The number of animals was kept to a minimum, and all efforts were made to reduce their suffering. Written informed consent was obtained from individuals or their guardians.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 737 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Ma, X., Han, S. et al. Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cell. Mol. Life Sci. 79, 154 (2022). https://doi.org/10.1007/s00018-022-04164-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04164-x

Keywords

Navigation