Skip to main content

Advertisement

Log in

ZBTB28 inhibits breast cancer by activating IFNAR and dual blocking CD24 and CD47 to enhance macrophages phagocytosis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Breast cancer is the leading cause of cancer death in female. Until now, advanced breast cancer is still lack effective treatment strategies and reliable prognostic markers. In the present article, we introduced the physiologic and pathologic functions and regulation mechanisms of ZBTB28, a tumor suppressor gene, in breast cancer. ZBTB28 is frequently silenced in breast cancer due to promoter CpG methylation, and its expression is positively correlated with breast cancer patient survival. The antineoplastic effect of ZBTB28 in breast cancer was elucidated through a series of in vitro and in vivo measurements, including cell proliferation, apoptosis, cell cycle, epithelial mesenchymal transition (EMT), and growth of xenografts. Furthermore, ZBTB28 can directly regulate IFNAR to activate interferon-stimulated genes and potentiate macrophage activation. Ectopic ZBTB28 expression in breast cancer cells was sufficient to downregulate CD24 and CD47 to promote phagocytosis of macrophages, demonstrating that ZBTB28 was beneficial for the combination treatment of anti-CD24 and anti-CD47. Collectively, our results reveal a mode of action of ZBTB28 as a tumor suppressor gene and suggest that ZBTB28 is an important regulator of macrophage phagocytosis in breast cancer, holding promise for the development of novel therapy strategies for breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

available at UALCAN databases showing ZBTB28 expression and methylation in Luminal, HER2 positive and TNBC types of breast cancer tissues compared to normal mammary tissues. D The relationship between ZBTB28 expression and survival of patients with breast cancer were illustrated through Kaplan–Meier plots database. E The expression and CpG methylation level of ZBTB28 in normal breast cell line and several kinds of breast cancer cell lines. β-actin expression as control. F Western blot analysis confirmed the exogenous expression of ZBTB28 in normal breast cells and breast cancer cell lines, with GAPDH as a control. G ZBTB28 methylation in primary breast cancer tissues (n = 34) and normal breast tissues (n = 16) were measured by MSP (M methylated; U unmethylated)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

5-Aza:

5-Aza-2’-deoxycytidine

BrCa:

Breast cancer

ChIP:

Chromatin immunoprecipitation

EMT:

Epithelial–mesenchymal transition

IFNAR:

The type I IFN receptor

ISGs:

Interferon-stimulated genes

MSP:

Methylation-specific PCR

PMA:

12-Myristate 13-acetate

Siglec-10:

Sialic-acid-binding Ig-like lectin 10

SIRPα:

Signal regulatory protein alpha

TFBSs:

Transcription factor-binding sites

ZBTB28:

Zinc-finger and BTB/POZ (Poxvirus and Zinc-finger) domain-containing family protein 28

References

  1. Weigelt B, Reis-Filho JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6(12):718–730. https://doi.org/10.1038/nrclinonc.2009.166

    Article  CAS  PubMed  Google Scholar 

  2. Bilimoria MM, Morrow M (1995) The woman at increased risk for breast cancer: evaluation and management strategies. CA Cancer J Clin 45(5):263–278

    Article  CAS  Google Scholar 

  3. Tichy JR, Lim E, Anders CK (2013) Breast cancer in adolescents and young adults: a review with a focus on biology. J Nat Compr Cancer Netw JNCCN 11(9):1060–1069

    Article  CAS  Google Scholar 

  4. Martin TA, Goyal A, Watkins G, Jiang WG (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12(6):488–496. https://doi.org/10.1245/aso.2005.04.010

    Article  PubMed  Google Scholar 

  5. Martin TD, Patel RS, Cook DR, Choi MY, Patil A, Liang AC et al (2021) The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 373(6561):1327–1335. https://doi.org/10.1126/science.abg5784

    Article  CAS  PubMed  Google Scholar 

  6. Hartatik T, Okada S, Okabe S, Arima M, Hatano M, Tokuhisa T (2001) Binding of BAZF and Bc16 to STAT6-binding DNA sequences. Biochem Biophys Res Commun 284(1):26–32

    Article  CAS  Google Scholar 

  7. Sakashita C, Fukuda T, Okabe S, Kobayashi H, Hirosawa S, Tokuhisa T, Miyasaka N, Miura O, Miki T (2002) Cloning and characterization of the human BAZF gene, a homologue of the BCL6 oncogene. Biochem Biophys Res Commun 291(3):567–573

    Article  CAS  Google Scholar 

  8. Wang W, Huang P, Panyisha W, Kong R, Jiang X, Zhang L, Yang Q, Xie Q et al (2015) BCL6B expression in hepatocellular carcinoma and its efficacy in the inhibition of liver damage and fibrogenesis. Oncotarget 6(24):20252–20265

    Article  Google Scholar 

  9. Hu S, Cao B, Zhang M, Linghu E, Zhan Q et al (2015) Epigenetic silencing BCL6B induced colorectal cancer proliferation and metastasis by inhibiting P53 signaling. Am J Cancer Res 5(2):651–662

    PubMed  PubMed Central  Google Scholar 

  10. Li L, Gong Y, Xu K, Chen W, Xia J, Cheng Z et al (2021) ZBTB28 induces autophagy by regulation of FIP200 and Bcl-XL facilitating cervical cancer cell apoptosis. J Exp Clin Cancer Res 40(1):150. https://doi.org/10.1186/s13046-021-01948-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu LY, Tang J, Zhang CM, Zeng WJ, Yan H, Li MP et al (2017) new immunotherapy strategies in breast cancer. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14010068

    Article  PubMed  PubMed Central  Google Scholar 

  12. Berger A, Colpitts SJ, Seabrook MSS, Furlonger CL, Bendix MB, Moreau JM et al (2019) Interleukin-15 in cancer immunotherapy: IL-15 receptor complex versus soluble IL-15 in a cancer cell-delivered murine leukemia model. J Immunother Cancer 7(1):355. https://doi.org/10.1186/s40425-019-0777-8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tang H, Qiao J, Fu YX (2016) Immunotherapy and tumor microenvironment. Cancer Lett 370(1):85–90. https://doi.org/10.1016/j.canlet.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  14. Salvagno C, Ciampricotti M, Tuit S, Hau CS, van Weverwijk A, Coffelt SB et al (2019) Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol 21(4):511–521. https://doi.org/10.1038/s41556-019-0298-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mesev EV, LeDesma RA, Ploss A (2019) Decoding type I and III interferon signalling during viral infection. Nat Microbiol 4(6):914–924. https://doi.org/10.1038/s41564-019-0421-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xuan C, Steward KK, Timmerman JM, Morrison SL (2010) Targeted delivery of interferon-alpha via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma. Blood 115(14):2864–2871. https://doi.org/10.1182/blood-2009-10-250555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pirruccello SJ, LeBien TW (1986) The human B cell-associated antigen CD24 is a single chain sialoglycoprotein. J Immunol 136(10):3779–3784

    CAS  PubMed  Google Scholar 

  18. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW et al (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572(7769):392–396. https://doi.org/10.1038/s41586-019-1456-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith SC, Oxford G, Wu Z, Nitz MD, Conaway M, Frierson HF et al (2006) The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res 66(4):1917–1922. https://doi.org/10.1158/0008-5472.Can-05-3855

    Article  CAS  PubMed  Google Scholar 

  20. Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35(3):255–262. https://doi.org/10.1023/b:hijo.0000032357.16261.c5

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Liu R, Ye P, Wong C, Chen GY, Zhou P et al (2015) Intracellular CD24 disrupts the ARF-NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nat Commun 6:5909. https://doi.org/10.1038/ncomms6909

    Article  CAS  PubMed  Google Scholar 

  22. Brown EJ, Frazier WA (2001) Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11(3):130–135. https://doi.org/10.1016/s0962-8924(00)01906-1

    Article  CAS  PubMed  Google Scholar 

  23. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109(17):6662–6667. https://doi.org/10.1073/pnas.1121623109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138(2):271–285. https://doi.org/10.1016/j.cell.2009.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng R, Zhao H, Xu J, Shen C (2020) CD47: the next checkpoint target for cancer immunotherapy. Crit Rev Oncol Hematol 152:103014. https://doi.org/10.1016/j.critrevonc.2020.103014

    Article  PubMed  Google Scholar 

  26. Qu M, Zou X, Fang F, Wang S, Xu L, Zeng Q et al (2020) Platelet-derived microparticles enhance megakaryocyte differentiation and platelet generation via miR-1915-3p. Nat Commun 11(1):4964. https://doi.org/10.1038/s41467-020-18802-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiang T, Tang J, Li L, Peng W, Du Z, Wang X et al (2019) Tumor suppressive BTB/POZ zinc-finger protein ZBTB28 inhibits oncogenic BCL6/ZBTB27 signaling to maintain p53 transcription in multiple carcinogenesis. Theranostics 9(26):8182–8195. https://doi.org/10.7150/thno.34983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Fan J, Fan Y, Li L, He X, Xiang Q et al (2018) The new 6q27 tumor suppressor DACT2, frequently silenced by CpG methylation, sensitizes nasopharyngeal cancer cells to paclitaxel and 5-FU toxicity via beta-catenin/Cdc25c signaling and G2/M arrest. Clin Epigenetics 10(1):26. https://doi.org/10.1186/s13148-018-0459-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li L, Tao Q, Jin H, van Hasselt A, Poon FF, Wang X et al (2010) The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res 16(11):2949–2958. https://doi.org/10.1158/1078-0432.ccr-09-3178

    Article  CAS  PubMed  Google Scholar 

  30. Lu W, Kang Y (2019) Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell 49(3):361–374. https://doi.org/10.1016/j.devcel.2019.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590. https://doi.org/10.1016/j.ccr.2011.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu Y, Yang J, Xu D, Gao XM, Zhang Z, Hsu JL et al (2019) Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut 68(9):1653–1666. https://doi.org/10.1136/gutjnl-2019-318419

    Article  CAS  PubMed  Google Scholar 

  33. Casazza A, Mazzone M (2014) Altering the intratumoral localization of macrophages to inhibit cancer progression. Oncoimmunology 3(1):e27872. https://doi.org/10.4161/onci.27872

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cattoretti G, Chang CC, Cechova K, Zhang J, Ye BH, Falini B et al (1995) BCL-6 protein is expressed in germinal-center B cells. Blood 86(1):45–53

    Article  CAS  Google Scholar 

  35. Herdoiza Padilla E, Crauwels P, Bergner T, Wiederspohn N, Förstner S, Rinas R et al (2019) mir-124-5p regulates phagocytosis of human macrophages by targeting the actin cytoskeleton via the ARP2/3 complex. Front Immunol 10:2210. https://doi.org/10.3389/fimmu.2019.02210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borden EC (2019) Interferons α and β in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov 18(3):219–234. https://doi.org/10.1038/s41573-018-0011-2

    Article  CAS  PubMed  Google Scholar 

  37. Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16(3):131–144. https://doi.org/10.1038/nrc.2016.14

    Article  CAS  PubMed  Google Scholar 

  38. Aricò E, Castiello L, Capone I, Gabriele L, Belardelli F (2019) Type I interferons and cancer: an evolving story demanding novel clinical applications. Cancers (Basel). https://doi.org/10.3390/cancers11121943

    Article  Google Scholar 

  39. Kulkarni A, Chandrasekar V, Natarajan SK, Ramesh A, Pandey P, Nirgud J et al (2018) A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat Biomed Eng 2(8):589–599. https://doi.org/10.1038/s41551-018-0254-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murata Y, Saito Y, Kotani T, Matozaki T (2018) CD47-signal regulatory protein α signaling system and its application to cancer immunotherapy. Cancer Sci 109(8):2349–2357. https://doi.org/10.1111/cas.13663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (#81872380, #81572769, #82003135), Natural Science Foundation of Chongqing (2020ZYO13799), and Hong Kong-RGC (GRF# 14115019). The authors thank Prof. Qian Tao (the Chinese University of Hong Kong, Hong Kong, China) for generously providing primers and plasmids.

Author information

Authors and Affiliations

Authors

Contributions

LL and XT: conception and design. LL, GY, and TJ performed majority of experiments. PW, CZ, YR, DC, and LL performed experiments and analyzed data. XQ, MJ, YC, XJ, and WY collected samples. LL and GY drafted the manuscript. XT, LL, and GY reviewed data and manuscript. XT, LL, GY, and LX reviewed data and finalized the manuscript. All authors reviewed and approved the final version.

Corresponding author

Correspondence to Tingxiu Xiang.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Ethical approval and consent to participate

The study was authorized by the Institutional Ethics Committees of The First Affiliated Hospital of Chongqing Medical University and conformed to the principles of the Declaration of Helsinki.

Consent for publication

We have obtained consent to publish from the participant to report individual patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3095 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Gong, Y., Tang, J. et al. ZBTB28 inhibits breast cancer by activating IFNAR and dual blocking CD24 and CD47 to enhance macrophages phagocytosis. Cell. Mol. Life Sci. 79, 83 (2022). https://doi.org/10.1007/s00018-021-04124-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04124-x

Keywords

Navigation