Skip to main content
Log in

Role for animal models in understanding essential fatty acid deficiency in cystic fibrosis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Essential fatty acid deficiency has been observed in most patients with Cystic Fibrosis (CF); however, pancreatic supplementation does not restore the deficiency, suggesting a different pathology independent of the pancreas. At this time, the underlying pathological mechanisms are largely unknown. Essential fatty acids are obtained from the diet and processed by organs including the liver and intestine, two organs significantly impacted by mutations in the cystic fibrosis transmembrane conductance regulator gene (Cftr). There are several CF animal models in a variety of species that have been developed to investigate molecular mechanisms associated with the CF phenotype. Specifically, global and systemic mutations in Cftr which mimic genotypic changes identified in CF patients have been generated in mice, rats, sheep, pigs and ferrets. These mutations produce CFTR proteins with a gating defect, trafficking defect, or an absent or inactive CFTR channel. Essential fatty acids are critical to CFTR function, with a bidirectional relationship between CFTR and essential fatty acids proposed. Currently, there are limited analyses on the essential fatty acid status in most of these animal models. Of interest, in the mouse model, essential fatty acid status is dependent on the genotype and resultant phenotype of the mouse. Future investigations should identify an optimal animal model that has most of the phenotypic changes associated with CF including the essential fatty acid deficiencies, which can be used in the development of therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data relevant to this review are included in the text, references and figures.

References

  1. Riordan JR et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  2. Veit G et al (2016) From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 27:424–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Capurro V et al (2021) Partial Rescue of F508del-CFTR Stability and Trafficking Defects by Double Corrector Treatment. Int J Mol Sci 22:5262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dijk FN, Fitzgerald DA (2012) The impact of newborn screening and earlier intervention on the clinical course of cystic fibrosis. Paediatr Respir Rev 13:220–225

    Article  PubMed  Google Scholar 

  5. Bell SC et al (2020) The future of cystic fibrosis care: a global perspective. Lancet Respir Med 8:65–124

    Article  CAS  PubMed  Google Scholar 

  6. Mingora CM, Flume PA (2021) Pulmonary complications in cystic fibrosis: past, present and future. Chest 160:1232–1240

    Article  PubMed  Google Scholar 

  7. Saiman L, Siegel J (2004) Infection control in cystic fibrosis. Clin Microbiol Rev 2004(17):57–71

    Article  Google Scholar 

  8. Armstrong DS et al (2005) Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Pediatr Pulmonol 40:500–510

    Article  PubMed  Google Scholar 

  9. Mingione A et al (2020) Cystic fibrosis defective response to infection involves autophagy and lipid metabolism. Cells 9:1845

    Article  CAS  PubMed Central  Google Scholar 

  10. Seegmiller AC (2014) Abnormal unsaturated fatty acid metabolism in cystic fibrosis: biochemical mechanisms and clinical implications. Int J Mol Sci 15:16083–16099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farrell PM et al (1985) Fatty acid abnormalities in cystic fibrosis. Pediatr Res 19:104–109

    Article  CAS  PubMed  Google Scholar 

  12. Kalivianakis M et al (1999) Fat malabsorption in cystic fibrosis patients receiving enzyme replacement therapy is due to impaired intestinal uptake of long-chain fatty acids. Am J Clin Nutr 69:127–134

    Article  CAS  PubMed  Google Scholar 

  13. McCarron A, Parsons D, Donnelley M (2021) Animal and cell culture models for cystic fibrosis: which model is right for your application? Am J Pathol 191:228–242

    Article  PubMed  Google Scholar 

  14. Kuo PT, Huang NN, Bassett DR (1962) The fatty acid composition of the serum chylomicrons and adipose tissue of children with cystic fibrosis of the pancreas. J Pediatr 60:394–403

    Article  CAS  PubMed  Google Scholar 

  15. Christophe AB, Warwick WJ, Holman RT (1994) Serum fatty acid profiles in cystic fibrosis patients and their parents. Lipids 29:569–575

    Article  CAS  PubMed  Google Scholar 

  16. Saxby N et al (2017) Nutrition Guidelines for Cystic Fibrosis in Australia and New Zealand, in Thoracic Society of Australia and New Zealand, S.C. Bell, Editor: Sydney

  17. Kaur N, Chugh V, Gupta AK (2014) Essential fatty acids as functional components of foods- a review. J Food Sci Technol 51:2289–2303

    Article  CAS  PubMed  Google Scholar 

  18. Gimeno RE et al (2003) Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality. J Biol Chem 278:49512–49516

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Agellon LB (2020) distinct alteration of gene expression programs in the small intestine of male and female mice in response to ablation of intestinal Fabp genes. Genes (Basel) 11:943

    Article  Google Scholar 

  20. Shrestha N et al (2019) Elevated maternal linoleic acid reduces circulating leptin concentrations, cholesterol levels and male fetal survival in a rat model. J Physiol 597:3349–3361

    Article  CAS  PubMed  Google Scholar 

  21. Harris JK et al (2020) Changes in airway microbiome and inflammation with ivacaftor treatment in patients with cystic fibrosis and the G551D mutation. Ann Am Thorac Soc 17:212–220

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alves Ferreira M et al (2017) Green tea extract outperforms metformin in lipid profile and glycaemic control in overweight women: A double-blind, placebo-controlled, randomized trial. Clin Nutr ESPEN 22:1–6

    Article  PubMed  Google Scholar 

  23. Briottet M, Shum M, Urbach V (2020) The role of specialized pro-resolving mediators in cystic fibrosis airways disease. Front Pharmacol 11:1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karp CL et al (2004) Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol 5:388–392

    Article  CAS  PubMed  Google Scholar 

  25. Ringholz FC et al (2018) Resolvin D1 regulates epithelial ion transport and inflammation in cystic fibrosis airways. J Cyst Fibros 17:607–615

    Article  CAS  PubMed  Google Scholar 

  26. Garić D et al (2020) The role of essential fatty acids in cystic fibrosis and normalizing effect of fenretinide. Cell Mol Life Sci 77:4255–4267

    Article  PubMed  Google Scholar 

  27. Maqbool A et al (2012) Relation between dietary fat intake type and serum fatty acid status in children with cystic fibrosis. J Pediatr Gastroenterol Nutr 55:605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mischler EH et al (1986) Correction of linoleic acid deficiency in cystic fibrosis. Pediatr Res 20:36–41

    Article  CAS  PubMed  Google Scholar 

  29. Strandvik B (2010) Fatty acid metabolism in cystic fibrosis. Prostaglandins Leukot Essent Fatty Acids 83(3):121–129

    Article  CAS  PubMed  Google Scholar 

  30. Strandvik B et al (1988) Relation between defective regulation of arachidonic acid release and symptoms in cystic fibrosis. Scand J Gastroenterol Suppl 143:1–4

    Article  CAS  PubMed  Google Scholar 

  31. Parsons HG et al (1988) Supplemental calories improve essential fatty acid deficiency in cystic fibrosis patients. Pediatr Res 24:353–356

    Article  CAS  PubMed  Google Scholar 

  32. Hankard R, Munck A, Navarro J (2002) Nutrition and growth in cystic fibrosis. Horm Res 58(Suppl 1):16–20

    CAS  PubMed  Google Scholar 

  33. Lloyd-Still JD, Johnson SB, Holman RT (1981) Essential fatty acid status in cystic fibrosis and the effects of safflower oil supplementation. Am J Clin Nutr 34:1–7

    Article  CAS  PubMed  Google Scholar 

  34. Oliver C, Watson H (2016) Omega-3 fatty acids for cystic fibrosis. Cochrane Database Syst Rev Cd002201

  35. O’Connor MG, Seegmiller A (2017) The effects of ivacaftor on CF fatty acid metabolism: An analysis from the GOAL study. J Cyst Fibros 16:132–138

    Article  CAS  PubMed  Google Scholar 

  36. Kopp BT et al (2018) Metabolomic responses to lumacaftor/ivacaftor in cystic fibrosis. Pediatr Pulmonol 53:583–591

    Article  PubMed  Google Scholar 

  37. Liessi N et al (2020) Distinctive lipid signatures of bronchial epithelial cells associated with cystic fibrosis drugs, including Trikafta. JCI Insight. 5:e138722

    Article  PubMed Central  Google Scholar 

  38. Cottrill KA, Farinha CM, McCarty NA (2020) The bidirectional relationship between CFTR and lipids. Commun Biol 3:179

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kang JX et al (1992) The chloride channel blocker anthracene 9-carboxylate inhibits fatty acid incorporation into phospholipid in cultured human airway epithelial cells. Biochem J 285:725–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Makyła K, Paluch M (2009) The linoleic acid influence on molecular interactions in the model of biological membrane. Colloids Surf B Biointerfaces 71:59–66

    Article  PubMed  Google Scholar 

  41. Gentzsch M et al (2007) Misassembled mutant DeltaF508 CFTR in the distal secretory pathway alters cellular lipid trafficking. J Cell Sci 120:447–455

    Article  CAS  PubMed  Google Scholar 

  42. Birket SE et al (2018) Development of an airway mucus defect in the cystic fibrosis rat. JCI Insight. 3:e97199

    Article  PubMed Central  Google Scholar 

  43. Fisher JT, Zhang Y, Engelhardt JF (2011) Comparative biology of cystic fibrosis animal models. Methods Mol Biol 742:311–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Doorninck JH et al (1995) A mouse model for the cystic fibrosis delta F508 mutation. Embo J 14:4403–4411

    Article  PubMed  PubMed Central  Google Scholar 

  45. Freedman SD et al (1999) A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(-/-) mice. Proc Natl Acad Sci U S A 96:13995–14000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Werner A et al (2004) No indications for altered essential fatty acid metabolism in two murine models for cystic fibrosis. J Lipid Res 45:2277–2286

    Article  CAS  PubMed  Google Scholar 

  47. Mimoun M et al (2009) Increased tissue arachidonic acid and reduced linoleic acid in a mouse model of cystic fibrosis are reversed by supplemental glycerophospholipids enriched in docosahexaenoic acid. J Nutr 139:2358–2364

    Article  CAS  PubMed  Google Scholar 

  48. Strandvik B et al (2018) Low linoleic and high docosahexaenoic acids in a severe phenotype of transgenic cystic fibrosis mice. Exp Biol Med (Maywood) 243:496–503

    Article  CAS  Google Scholar 

  49. De Lisle RC et al (2008) Altered eicosanoid metabolism in the cystic fibrosis mouse small intestine. J Pediatr Gastroenterol Nutr 47:406–416

    Article  PubMed  Google Scholar 

  50. Delaney SJ et al (1996) Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations. Embo J 15:955–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McMorran BJ et al (2001) G551D CF mice display an abnormal host response and have impaired clearance of Pseudomonas lung disease. Am J Physiol Lung Cell Mol Physiol 281:L740–L747

    Article  CAS  PubMed  Google Scholar 

  52. McCarron A et al (2020) Phenotypic characterization and comparison of cystic fibrosis rat models generated using CRISPR/Cas9 gene editing. Am J Pathol 190:977–993

    Article  CAS  PubMed  Google Scholar 

  53. Dreano E et al (2019) Characterization of two rat models of cystic fibrosis-KO and F508del CFTR-generated by Crispr-Cas9. Animal Model Exp Med 2:297–311

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tuggle KL et al (2014) Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLoS One. 9:e91253

    Article  PubMed  PubMed Central  Google Scholar 

  55. Birket SE et al (2020) Ivacaftor reverses airway mucus abnormalities in a rat model harboring a humanized G551D-CFTR. Am J Respir Crit Care Med 202:1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Green M et al (2021) Ivacaftor partially corrects airway inflammation in a humanized G551D rat. Am J Physiol Lung Cell Mol Physiol 320:L1093-l1100

    Article  CAS  PubMed  Google Scholar 

  57. Ostedgaard LS et al (2011) The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med. 3:74ra24

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stoltz DA et al (2010) Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2:29ra31

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rogers CS et al (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fan Z et al (2018) A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight. 3:e123529

    Article  PubMed Central  Google Scholar 

  61. Keiser NW et al (2015) Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs. Am J Respir Cell Mol Biol 52:683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olivier AK et al (2012) Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J Clin Invest 122:3755–3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun X et al (2014) Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol 50:502–512

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hodson L, Gunn PJ (2019) The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol 15:689–700

    Article  CAS  PubMed  Google Scholar 

  65. Innes JK, Calder PC (2020) Marine omega-3 (N-3) fatty acids for cardiovascular health: an update for 2020. Int J Mol Sci 21:1362

    Article  CAS  PubMed Central  Google Scholar 

  66. Kent G et al (1997) Lung disease in mice with cystic fibrosis. J Clin Invest 100:3060–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beharry S et al (2007) Long-term docosahexaenoic acid therapy in a congenic murine model of cystic fibrosis. Am J Physiol Gastrointest Liver Physiol 292:G839–G848

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the contributions of members of the laboratories, who have contributed to current and past research on Cystic Fibrosis and essential fatty acid metabolism. Figures were produced using Biorender.

Funding

DP and MD: NHMRC (GNT1160011), and the CF Foundation (PARSON18G0).

Author information

Authors and Affiliations

Authors

Contributions

CJ and DH completed the first draft of the manuscript. All authors assisted with subsequent drafts and approved the final draft.

Corresponding author

Correspondence to Deanne H. Hryciw.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest with the content of this manuscript. Any potential conflicts of interest among all authors related to funding or other financial agreements will be collected and updated during the review process.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hryciw, D.H., Jackson, C.A., Shrestha, N. et al. Role for animal models in understanding essential fatty acid deficiency in cystic fibrosis. Cell. Mol. Life Sci. 78, 7991–7999 (2021). https://doi.org/10.1007/s00018-021-04014-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-04014-2

Keywords

Navigation