Skip to main content
Log in

Ghrelin treatment induces rapid and delayed increments of food intake: a heuristic model to explain ghrelin’s orexigenic effects

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Ghrelin is a stomach-derived peptide hormone with salient roles in the regulation of energy balance and metabolism. Notably, ghrelin is recognized as the most powerful known circulating orexigenic hormone. Here, we systematically investigated the effects of ghrelin on energy homeostasis and found that ghrelin primarily induces a biphasic effect on food intake that has indirect consequences on energy expenditure and nutrient partitioning. We also found that ghrelin-induced biphasic effect on food intake requires the integrity of Agouti-related peptide/neuropeptide Y-producing neurons of the hypothalamic arcuate nucleus, which seem to display a long-lasting activation after a single systemic injection of ghrelin. Finally, we found that different autonomic, hormonal and metabolic satiation signals transiently counteract ghrelin-induced food intake. Based on our observations, we propose a heuristic model to describe how the orexigenic effect of ghrelin and the anorectic food intake-induced rebound sculpt a timely constrain feeding response to ghrelin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and are available from the corresponding author on reasonable request.

References

  1. Yanagi S, Sato T, Kangawa K, Nakazato M (2018) The homeostatic force of ghrelin. Cell Metab 27:786–804. https://doi.org/10.1016/j.cmet.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  2. Fernandez G, Cabral A, Andreoli MF, Labarthe A, M’Kadmi C, Ramos JG et al (2018) Evidence supporting a role for constitutive ghrelin receptor signaling in fasting-induced hyperphagia in male mice. Endocrinology 159:1021–1034. https://doi.org/10.1210/en.2017-03101

    Article  CAS  PubMed  Google Scholar 

  3. Zhao T-J, Liang G, Li RL, Xie X, Sleeman MW, Murphy AJ et al (2010) Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc Natl Acad Sci 107:7467–7472. https://doi.org/10.1073/pnas.1002271107

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cabral A, Valdivia S, Fernandez G, Reynaldo M, Perello M (2014) Divergent neuronal circuitries underlying acute orexigenic effects of peripheral or central ghrelin: critical role of brain accessibility. J Neuroendocrinol 26:542–554. https://doi.org/10.1111/jne.12168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuo Y-T, Parkinson JRC, Chaudhri OB, Herlihy AH, So P-W, Dhillo WS et al (2007) The temporal sequence of gut peptide–CNS interactions tracked in vivo by magnetic resonance imaging. J Neurosci 27:12341–12348. https://doi.org/10.1523/JNEUROSCI.2391-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McFarlane MR, Brown MS, Goldstein JL, Zhao T-J (2014) Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab 20:54–60. https://doi.org/10.1016/j.cmet.2014.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG et al (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992–5992. https://doi.org/10.1210/jcem.86.12.8111

    Article  CAS  PubMed  Google Scholar 

  8. Andermann ML, Lowell BB (2017) Toward a wiring diagram understanding of appetite control. Neuron 95:757–778. https://doi.org/10.1016/j.neuron.2017.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14:351–355. https://doi.org/10.1038/nn.2739

    Article  CAS  PubMed  Google Scholar 

  10. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS et al (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121:1424–1428. https://doi.org/10.1172/JCI46229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T et al (2005) Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 8:1289–1291. https://doi.org/10.1038/nn1548

    Article  CAS  PubMed  Google Scholar 

  12. Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310:683–685. https://doi.org/10.1126/science.1115524

    Article  CAS  PubMed  Google Scholar 

  13. Willesen MG, Kristensen P, Rømer J (1999) Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. NEN 70:306–316. https://doi.org/10.1159/000054491

    Article  CAS  Google Scholar 

  14. Wang Q, Liu C, Uchida A, Chuang J-C, Walker A, Liu T et al (2014) Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol Metab 3:64–72. https://doi.org/10.1016/j.molmet.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  15. Wu C-S, Bongmba O, Yue J, Lee J, Lin L, Saito K et al (2017) Suppression of GHS-R in AgRP neurons mitigates diet-induced obesity by activating thermogenesis. IJMS 18:832. https://doi.org/10.3390/ijms18040832

    Article  CAS  PubMed Central  Google Scholar 

  16. Frankenfield DC (2010) On heat, respiration, and calorimetry. Nutrition 26:939–950. https://doi.org/10.1016/j.nut.2010.01.002

    Article  PubMed  Google Scholar 

  17. Tschöp M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913. https://doi.org/10.1038/35038090

    Article  PubMed  Google Scholar 

  18. Denis RGP, Joly-Amado A, Webber E, Langlet F, Schaeffer M, Padilla SL et al (2015) Palatability can drive feeding independent of AgRP neurons. Cell Metab 22:646–657. https://doi.org/10.1016/j.cmet.2015.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jerlhag E (2008) Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol 13:358–363. https://doi.org/10.1111/j.1369-1600.2008.00125.x

    Article  CAS  PubMed  Google Scholar 

  20. Jerlhag E, Egecioglu E, Dickson SL, Engel JA (2011) Glutamatergic regulation of ghrelin-induced activation of the mesolimbic dopamine system: mechanisms for ghrelin-induced reinforcement. Addict Biol 16:82–91. https://doi.org/10.1111/j.1369-1600.2010.00231.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cornejo MP, Barrile F, De Francesco PN, Portiansky EL, Reynaldo M, Perello M (2018) Ghrelin recruits specific subsets of dopamine and GABA neurons of different ventral tegmental area sub-nuclei. Neuroscience 392:107–120. https://doi.org/10.1016/j.neuroscience.2018.09.027

    Article  CAS  PubMed  Google Scholar 

  22. Naznin F, Toshinai K, Waise TMZ, Okada T, Sakoda H, Nakazato M (2018) Restoration of metabolic inflammation-related ghrelin resistance by weight loss. J Mol Endocrinol 60:109–118. https://doi.org/10.1530/JME-17-0192

    Article  CAS  PubMed  Google Scholar 

  23. Theander-Carrillo C (2006) Ghrelin action in the brain controls adipocyte metabolism. J Clin Investig 116:1983–1993. https://doi.org/10.1172/JCI25811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van den Pol AN, Yao Y, Fu L-Y, Foo K, Huang H, Coppari R et al (2009) Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong renilla green fluorescent protein in NPY neurons. J Neurosci 29:4622–4639. https://doi.org/10.1523/JNEUROSCI.3249-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luquet S, Phillips CT, Palmiter RD (2007) NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 28:214–225. https://doi.org/10.1016/j.peptides.2006.08.036

    Article  CAS  PubMed  Google Scholar 

  26. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US); 2011

  27. Cornejo MP, Castrogiovanni D, Schiöth HB, Reynaldo M, Marie J, Fehrentz J et al (2019) Growth hormone secretagogue receptor signalling affects high-fat intake independently of plasma levels of ghrelin and LEAP 2, in a 4-day binge eating model. J Neuroendocrinol. https://doi.org/10.1111/jne.12785

    Article  PubMed  Google Scholar 

  28. Even PC, Nadkarni NA (2012) Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol-Regul, Integr Comp Physiol 303:R459–R476. https://doi.org/10.1152/ajpregu.00137.2012

    Article  CAS  Google Scholar 

  29. Weir JBDB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9. https://doi.org/10.1113/jphysiol.1949.sp004363

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cabral A, Suescun O, Zigman JM, Perello M (2012) Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents. PLoS ONE 7:e31462. https://doi.org/10.1371/journal.pone.0031462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Navarro M, Lerma-Cabrera JM, Carvajal F, Lowery EG, Cubero I, Thiele TE (2011) Assessment of voluntary ethanol consumption and the effects of a melanocortin (MC) receptor agonist on ethanol intake in mutant C57BL/6J mice lacking the MC-4 receptor. Alcohol Clin Exp Res 35:1058–1066. https://doi.org/10.1111/j.1530-0277.2011.01438.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lockie SH, Stark R, Mequinion M, Ch’ng S, Kong D, Spanswick DC et al (2018) Glucose availability predicts the feeding response to ghrelin in male mice, an effect dependent on AMPK in AgRP neurons. Endocrinology 159:3605–3614. https://doi.org/10.1210/en.2018-00536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bilreiro C, Fernandes FF, Andrade L, Chavarrías C, Simões RV, Matos C, et al. (2020) Hyoscine butylbromide for bowel motion reduction in mouse abdominal MRI. ArXiv: 200704282 [Physics]

  34. Cabral A, Cornejo MP, Fernandez G, De Francesco PN, Garcia-Romero G, Uriarte M et al (2017) Circulating ghrelin acts on GABA neurons of the area postrema and mediates gastric emptying in male mice. Endocrinology 158:1436–1449. https://doi.org/10.1210/en.2016-1815

    Article  CAS  PubMed  Google Scholar 

  35. Shoji E, Okumura T, Onodera S, Takahashi N, Harada K, Kohgo Y (1997) Gastric emptying in OLETF rats not expressing CCK-A receptor gene. Dig Dis Sci 42:915–919. https://doi.org/10.1023/a:1018860313674

    Article  CAS  PubMed  Google Scholar 

  36. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK et al (2007) Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 5:181–194. https://doi.org/10.1016/j.cmet.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  37. Kopin AS, Mathes WF, McBride EW, Nguyen M, Al-Haider W, Schmitz F et al (1999) The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest 103:383–391. https://doi.org/10.1172/JCI4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates

  39. Murai A, Iwamura K, Takada M, Ogawa K, Usui T, Okumura J (2002) Control of postprandial hyperglycaemia by galactosyl maltobionolactone and its novel anti-amylase effect in mice. Life Sci 71:1405–1415. https://doi.org/10.1016/s0024-3205(02)01844-1

    Article  CAS  PubMed  Google Scholar 

  40. Page LC, Gastaldelli A, Gray SM, D’Alessio DA, Tong J (2018) Interaction of GLP-1 and ghrelin on glucose tolerance in healthy humans. Diabetes 67:1976–1985. https://doi.org/10.2337/db18-0451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Caixás A, Bashore C, Nash W, Pi-Sunyer F, Laferrère B (2002) Insulin, unlike food intake, does not suppress ghrelin in human subjects. J Clin Endocrinol Metab 87:1902. https://doi.org/10.1210/jcem.87.4.8538

    Article  PubMed  Google Scholar 

  42. Wells AS, Read NW, Uvnas-Moberg K, Alster P (1997) Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiol Behav 61:679–686. https://doi.org/10.1016/s0031-9384(96)00519-7

    Article  CAS  PubMed  Google Scholar 

  43. Kobelt P, Tebbe JJ, Tjandra I, Stengel A, Bae H-G, Andresen V et al (2005) CCK inhibits the orexigenic effect of peripheral ghrelin. Am J Physiol Regul Integr Comp Physiol 288:R751-758. https://doi.org/10.1152/ajpregu.00094.2004

    Article  CAS  PubMed  Google Scholar 

  44. Liddle RA, Goldfine ID, Williams JA (1984) Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 87:542–549

    Article  CAS  Google Scholar 

  45. Lindén A, Uvnäs-Moberg K, Forsberg G, Bednar I, Södersten P (1989) Plasma concentrations of cholecystokinin octapeptide and food intake in male rats treated with cholecystokinin octapeptide. J Endocrinol 121:59–65. https://doi.org/10.1677/joe.0.1210059

    Article  PubMed  Google Scholar 

  46. Phillips RJ, Powley TL (1996) Gastric volume rather than nutrient content inhibits food intake. Am J Physiol 271:R766-769. https://doi.org/10.1152/ajpregu.1996.271.3.R766

    Article  CAS  PubMed  Google Scholar 

  47. Powley TL, Phillips RJ (2004) Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav 82:69–74. https://doi.org/10.1016/j.physbeh.2004.04.037

    Article  CAS  PubMed  Google Scholar 

  48. Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N et al (2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120:337–345. https://doi.org/10.1053/gast.2001.22158

    Article  CAS  PubMed  Google Scholar 

  49. Stacher G, Bergmann H, Havlik E, Schmierer G, Schneider C (1984) Effects of oral cyclotropium bromide, hyoscine N-butylbromide and placebo on gastric emptying and antral motor activity in healthy man. Gut 25:485–490. https://doi.org/10.1136/gut.25.5.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K et al (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198. https://doi.org/10.1038/35051587

    Article  CAS  PubMed  Google Scholar 

  51. Kim ER, Tong Q (2017) Oxygen consumption rate and energy expenditure in mice: indirect calorimetry. In: Wu J (ed) Thermogenic fat: methods and protocols. Springer, New York, pp 135–143. https://doi.org/10.1007/978-1-4939-6820-6_13

    Chapter  Google Scholar 

  52. Cabral A, Fernandez G, Tolosa MJ, Rey Moggia Á, Calfa G, De Francesco PN et al (2020) Fasting induces remodeling of the orexigenic projections from the arcuate nucleus to the hypothalamic paraventricular nucleus, in a growth hormone secretagogue receptor–dependent manner. Mol Metab 32:69–84. https://doi.org/10.1016/j.molmet.2019.11.014

    Article  CAS  PubMed  Google Scholar 

  53. Chuang J-C, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter M et al (2011) Ghrelin mediates stress-induced food-reward behavior in mice. J Clin Invest 121:2684–2692. https://doi.org/10.1172/JCI57660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Francesco PN, Cornejo MP, Barrile F, García Romero G, Valdivia S, Andreoli MF et al (2019) Inter-individual variability for high fat diet consumption in inbred C57BL/6 mice. Front Nutr 6:67. https://doi.org/10.3389/fnut.2019.00067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hassouna R, Zizzari P, Viltart O, Yang S-K, Gardette R, Videau C et al (2012) A natural variant of obestatin, Q90L, inhibits ghrelin’s action on food intake and GH secretion and targets NPY and GHRH neurons in mice. PLoS ONE 7:e51135. https://doi.org/10.1371/journal.pone.0051135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mano-Otagiri A, Ohata H, Iwasaki-Sekino A, Nemoto T, Shibasaki T (2009) Ghrelin suppresses noradrenaline release in the brown adipose tissue of rats. J Endocrinol 201:341–349. https://doi.org/10.1677/JOE-08-0374

    Article  CAS  PubMed  Google Scholar 

  57. Westerterp KR (2017) Control of energy expenditure in humans. Eur J Clin Nutr 71:340–344. https://doi.org/10.1038/ejcn.2016.237

    Article  CAS  PubMed  Google Scholar 

  58. Tsubone T, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H (2005) Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice. Regul Pept 130:97–103. https://doi.org/10.1016/j.regpep.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  59. Yasuda T, Masaki T, Kakuma T, Yoshimatsu H (2003) Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neurosci Lett 349:75–78. https://doi.org/10.1016/S0304-3940(03)00789-4

    Article  CAS  PubMed  Google Scholar 

  60. Abtahi S, Mirza A, Howell E, Currie PJ (2017) Ghrelin enhances food intake and carbohydrate oxidation in a nitric oxide dependent manner. Gen Comp Endocrinol 250:9–14. https://doi.org/10.1016/j.ygcen.2017.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kohno D, Gao H-Z, Muroya S, Kikuyama S, Yada T (2003) Ghrelin directly interacts with neuropeptide-Y– containing neurons in the rat arcuate nucleus. Diabetes 52:9

    Article  Google Scholar 

  62. Yang Y, Atasoy D, Su HH, Sternson SM (2011) Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146:992–1003. https://doi.org/10.1016/j.cell.2011.07.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG et al (2004) Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 145:2607–2612. https://doi.org/10.1210/en.2003-1596

    Article  CAS  PubMed  Google Scholar 

  64. Chen Y, Lin Y-C, Zimmerman CA, Essner RA, Knight ZA (2016) Hunger neurons drive feeding through a sustained, positive reinforcement signal. Elife 5:e18640. https://doi.org/10.7554/eLife.18640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakajima K, Cui Z, Li C, Meister J, Cui Y, Fu O et al (2016) Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nat Commun. https://doi.org/10.1038/ncomms10268

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hassouna R, Labarthe A, Zizzari P, Videau C, Culler M, Epelbaum J et al (2013) Actions of agonists and antagonists of the ghrelin/GHS-R pathway on GH secretion, appetite, and cFos activity. Front Endocrinol (Lausanne) 4:25. https://doi.org/10.3389/fendo.2013.00025

    Article  CAS  Google Scholar 

  67. Semjonous NM, Smith KL, Parkinson JRC, Gunner DJL, Liu Y-L, Murphy KG et al (2009) Coordinated changes in energy intake and expenditure following hypothalamic administration of neuropeptides involved in energy balance. Int J Obes (Lond) 33:775–785. https://doi.org/10.1038/ijo.2009.96

    Article  CAS  Google Scholar 

  68. Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488:172–177. https://doi.org/10.1038/nature11270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krashes MJ, Shah BP, Koda S, Lowell BB (2013) Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 18:588–595. https://doi.org/10.1016/j.cmet.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  70. Chen Y, Essner RA, Kosar S, Miller OH, Lin Y-C, Mesgarzadeh S et al (2019) Sustained NPY signaling enables AgRP neurons to drive feeding. Elife 8:e46348. https://doi.org/10.7554/eLife.46348

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pomeroy AR, Rand MJ (1969) Anticholinergic effects and passage through the intestinal wall of N-butylhyoscine bromide. J Pharm Pharmacol 21:180–187. https://doi.org/10.1111/j.2042-7158.1969.tb08224.x

    Article  CAS  PubMed  Google Scholar 

  72. Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y, Gray LA et al (2019) Genetic identification of vagal sensory neurons that control feeding. Cell 179:1129-1143.e23. https://doi.org/10.1016/j.cell.2019.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kohno D, Nakata M, Maekawa F, Fujiwara K, Maejima Y, Kuramochi M et al (2007) Leptin suppresses ghrelin-induced activation of neuropeptide Y neurons in the arcuate nucleus via phosphatidylinositol 3-kinase- and phosphodiesterase 3-mediated pathway. Endocrinology 148:2251–2263. https://doi.org/10.1210/en.2006-1240

    Article  CAS  PubMed  Google Scholar 

  74. Perello M, Scott MM, Sakata I, Lee CE, Chuang J-C, Osborne-Lawrence S et al (2012) Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. J Comp Neurol 520:281–294. https://doi.org/10.1002/cne.22690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Beutler LR, Chen Y, Ahn JS, Lin Y-C, Essner RA, Knight ZA (2017) Dynamics of gut-brain communication underlying hunger. Neuron 96:461-475.e5. https://doi.org/10.1016/j.neuron.2017.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Andreoli MF, De Francesco PN, Perello M (2018) Gastrointestinal hormones controlling energy homeostasis and their potential role in obesity. In: Nillni EA (ed) Textbook of energy balance, neuropeptide hormones, and neuroendocrine function. Springer International Publishing, Cham, pp 183–203. https://doi.org/10.1007/978-3-319-89506-2_7

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Marcelo Vatta from the University of Buenos Aires for providing CCK-8S.

Funding

This work was supported by grants from the Fondo para la Investigación Científica y Tecnológica (FONCyT, PICT2016-1084 and PICT2017-3196) and from CONICET (PUE-2017) to MP. MPC and GF were supported by CONICET.

Author information

Authors and Affiliations

Authors

Contributions

MPC, RGPD, GGR, GF, and MR performed the experiments. MPC, MP, RGPD, and SL designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Mario Perello.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornejo, M.P., Denis, R.G.P., García Romero, G. et al. Ghrelin treatment induces rapid and delayed increments of food intake: a heuristic model to explain ghrelin’s orexigenic effects. Cell. Mol. Life Sci. 78, 6689–6708 (2021). https://doi.org/10.1007/s00018-021-03937-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03937-0

Keywords

Navigation