Skip to main content
Log in

Of membranes and malaria: phospholipid asymmetry in Plasmodium falciparum-infected red blood cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Malaria is a vector-borne parasitic disease with a vast impact on human history, and according to the World Health Organisation, Plasmodium parasites still infect over 200 million people per year. Plasmodium falciparum, the deadliest parasite species, has a remarkable ability to undermine the host immune system and cause life-threatening disease during blood infection. The parasite’s host cells, red blood cells (RBCs), generally maintain an asymmetric distribution of phospholipids in the two leaflets of the plasma membrane bilayer. Alterations to this asymmetry, particularly the exposure of phosphatidylserine (PS) in the outer leaflet, can be recognised by phagocytes. Because of the importance of innate immune defence numerous studies have investigated PS exposure in RBCs infected with P. falciparum, but have reached different conclusions. Here we review recent advancements in our understanding of the molecular mechanisms which regulate asymmetry in RBCs, and whether infection with the P. falciparum parasite results in changes to PS exposure. On the balance of evidence, it is likely that membrane asymmetry is disrupted in parasitised RBCs, though some methodological issues need addressing. We discuss the potential causes and consequences of altered asymmetry in parasitised RBCs, particularly for in vivo interactions with the immune system, and the role of host-parasite co-evolution. We also examine the potential asymmetric state of parasite membranes and summarise current knowledge on the parasite proteins, which could regulate asymmetry in these membranes. Finally, we highlight unresolved questions at this time and the need for interdisciplinary approaches to uncover the machinery which enables P. falciparum parasites to hide in mature erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weatherall DJ (2008) Genetic variation and susceptibility to infection: the red cell and malaria. Br J Haematol 141(3):276–286

    Article  CAS  PubMed  Google Scholar 

  2. Bretscher MS (1972) Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol 236(61):11–12

    Article  CAS  PubMed  Google Scholar 

  3. Gordesky SE, Marinetti GV (1973) The asymmetric arrangement of phospholipids in the human erythrocyte membrane. Biochem Biophys Res Commun 50(4):1027–1031

    Article  CAS  PubMed  Google Scholar 

  4. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111

    Article  CAS  PubMed  Google Scholar 

  5. Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39(1):407–427

    Article  CAS  PubMed  Google Scholar 

  6. Kazanietz MG, Barchi JJ, Omichinski JG, Blumberg PM (1995) Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids. J Biol Chem 270(24):14679–14684

    Article  CAS  PubMed  Google Scholar 

  7. Mombers C, de Gier J, Demel RA, van Deenen LL (1980) Spectrin-phospholipid interaction. A monolayer study. Biochim Biophys Acta 603(1):52–62

    Article  CAS  PubMed  Google Scholar 

  8. An X, Guo X, Sum H, Morrow J, Gratzer W, Mohandas N (2004) Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 43(2):310–315

    Article  CAS  PubMed  Google Scholar 

  9. Manno S, Takakuwa Y, Mohandas N (2002) Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc Natl Acad Sci USA 99(4):1943–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319(5860):210–213

    Article  CAS  PubMed  Google Scholar 

  11. Martin SJ, Reutelingsperger CPM, McGahon AJ, Rader JA, Van Schie RCAA, LaFace DM et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of BCL-2 and Abl. J Exp Med 182(5):1545–1556

    Article  CAS  PubMed  Google Scholar 

  12. McEvoy L, Williamson P, Schlegel RA (1986) Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages. Proc Natl Acad Sci USA 83(10):3311–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Connor J, Pak C, Schroit A (1994) Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells. J Biol Chem 269:2399–2404

    Article  CAS  PubMed  Google Scholar 

  14. Fadok VA, De Cathelineau A, Daleke DL, Henson PM, Bratton DL (2001) Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem 276(2):1071–1077

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz RS, Tanaka Y, Fidler IJ, Chiu DT, Lubin B, Schroit AJ (1985) Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes. J Clin Investig 75(6):1965–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naeini MB, Bianconi V, Pirro M, Sahebkar A (2020) The role of phosphatidylserine recognition receptors in multiple biological functions. Cell Mol Bio Lett 25:23

    Article  Google Scholar 

  17. Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D et al (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 23(6):962–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pretorius E, du Plooy JN, Bester J (2016) A comprehensive review on eryptosis. Cell Physiol Biochem 39(5):1977–2000

    Article  CAS  PubMed  Google Scholar 

  20. Lang E, Qadri SM, Lang F (2012) Killing me softly—suicidal erythrocyte death. Int J Biochem Cell 44(8):1236–1243

    Article  CAS  Google Scholar 

  21. Pomorski T, Menon AK (2006) Lipid flippases and their biological functions. Cell Mol Life Sci 63(24):2908–2921

    Article  CAS  PubMed  Google Scholar 

  22. Daleke DL (2007) Phospholipid flippases. J Biol Chem 282(2):821–825

    Article  CAS  PubMed  Google Scholar 

  23. Hankins HM, Baldridge RD, Xu P, Graham TR (2015) Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16(1):35–47

    Article  CAS  PubMed  Google Scholar 

  24. Zachowski A, Favre E, Cribier S, Hervé P, Devaux PF (1986) Outside-inside translocation of aminophospholipids in the human erythrocyte membrane is mediated by a specific enzyme. Biochemistry 25(9):2585–2590

    Article  CAS  PubMed  Google Scholar 

  25. Bitbol M, Devaux PF (1988) Measurement of outward translocation of phospholipids across human erythrocyte membrane. Proc Natl Acad Sci USA 85(18):6783–6787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang J, Molday LL, Hii T, Coleman JA, Wen T, Andersen JP et al (2018) Proteomic analysis and functional characterization of P4-ATPase phospholipid flippases from murine tissues. Sci Rep 8:10795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS (2016) P4-ATPases as phospholipid flippases—structure, function, and enigmas. Front Physiol 7:275

    Article  PubMed  PubMed Central  Google Scholar 

  28. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S (2013) Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341(6144):403–406

    Article  CAS  PubMed  Google Scholar 

  29. Van Kruchten R, Mattheij NJA, Saunders C, Feijge MAH, Swieringa F, Wolfs JLN et al (2013) Both TMEM16F-dependent and TMEM16F-independent pathways contribute to phosphatidylserine exposure in platelet apoptosis and platelet activation. Blood 121(10):1850–1857

    Article  PubMed  CAS  Google Scholar 

  30. Bevers EM, Comfurius P, Zwaal RFA (1983) Changes in membrane phospholipid distribution during platelet activation. BBA Biomembr 736(1):57–66

    Article  CAS  Google Scholar 

  31. Bevers EM, Comfurius P, van Rijn JL, Hemker HC, Zwaal RF (1982) Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem 122(2):429–436

    Article  CAS  PubMed  Google Scholar 

  32. Schoenwaelder SM, Yuan Y, Josefsson EC, White MJ, Yao Y, Mason KD et al (2009) Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 114(3):663–666

    Article  CAS  PubMed  Google Scholar 

  33. Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S (2014) Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344(6188):1164–1168

    Article  CAS  PubMed  Google Scholar 

  34. Arashiki N, Takakuwa Y (2019) Role of cholesterol in maintaining asymmetric distribution of phosphatidylserine in plasma membranes. In: Patel VB (ed) The molecular nutrition of fats. Academic Press, pp 77–86

    Google Scholar 

  35. Arashiki N, Saito M, Koshino I, Kamata K, Hale J, Mohandas N et al (2016) An unrecognized function of cholesterol: regulating the mechanism controlling membrane phospholipid asymmetry. Biochemistry 55(25):3504–3513

    Article  CAS  PubMed  Google Scholar 

  36. van Zwieten R, Bochem AE, Hilarius PM, Van Bruggen R, Kees Hovingh G, Verhoeven AJ (2012) The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure. Biochim Biophys Acta 1821(12):1493–1500

    Article  PubMed  CAS  Google Scholar 

  37. Williamson P, Bateman J, Kozarsky K, Mattocks K, Hermanowicz N, Choe HR et al (1982) Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Cell 30(3):725–733

    Article  CAS  PubMed  Google Scholar 

  38. Kuypers F, Lewis R, Hua M, Schott M, Discher D, Ernst J et al (1996) Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood 87(3):1179–1187

    Article  CAS  PubMed  Google Scholar 

  39. Daleke DL (2008) Regulation of phospholipid asymmetry in the erythrocyte membrane. Curr Opin Hematol 15(3):191–195

    Article  CAS  PubMed  Google Scholar 

  40. Sathi A, Viswanad V, Aneesh TP, Kumar BA (2014) Pros and cons of phospholipid asymmetry in erythrocytes. J Pharm Bioallied Sci 6(2):81–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Arese P, Turrini F, Schwarzer E (2005) Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes. Cell Physiol Biochem 16(4–6):133–146

    Article  CAS  PubMed  Google Scholar 

  42. Paulusma CC, Oude Elferink RPJ (2010) P4 ATPases—the physiological relevance of lipid flipping transporters. FEBS Lett 584(13):2708–2716

    Article  CAS  PubMed  Google Scholar 

  43. van der Mark VA, Elferink RPJO, Paulusma CC (2013) P4 ATPases: flippases in health and disease. Int J Mol Sci 14(4):7897–7922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liou AY, Molday LL, Wang J, Andersen JP, Molday RS (2019) Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells. J Biol Chem 294(17):6809–6821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bryk AH, Wiśniewski JR (2017) Quantitative analysis of human red blood cell proteome. J Proteome Res 16(8):2752–2761

    Article  CAS  PubMed  Google Scholar 

  46. Arashiki N, Takakuwa Y, Mohandas N, Hale J, Yoshida K, Ogura H et al (2016) ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia. Haematologica 101(5):559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yabas M, Coupland LA, Cromer D, Winterberg M, Teoh NC, D’Rozario J et al (2014) Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span. J Biol Chem 289(28):19531–19537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yabas M, Teh CE, Frankenreiter S, Lal D, Roots CM, Whittle B et al (2011) ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat Immunol 12(5):441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yabas M, Jing W, Shafik S, Bröer S, Enders A (2016) ATP11C facilitates phospholipid translocation across the plasma membrane of all leukocytes. PLoS ONE 11(1):e0146774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Quazi F, Molday RS (2013) Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants. J Biol Chem 288(48):34414–34426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Quazi F, Molday RS (2011) Lipid transport by mammalian ABC proteins. Essays Biochem 50(1):265–290

    CAS  PubMed  Google Scholar 

  52. Woehlecke H, Pohl A, Alder-Baerens N, Lage H, Herrmann A (2003) Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2). Biochem J 376(2):489–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kang JH, Ko HM, Han GD, Lee SY, Moon JS, Kim MS et al (2020) Dual role of phosphatidylserine and its receptors in osteoclastogenesis. Cell Death Dis 11(7):497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, Borst P et al (1996) MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87(3):507–517

    Article  PubMed  Google Scholar 

  55. Kamp D, Haest CWM (1998) Evidence for a role of the multidrug resistance protein (MRP) in the outward translocation of NBD-phospholipids in the erythrocyte membrane. Biochim Biophys Acta Biomembr 1372(1):91–101

    Article  CAS  Google Scholar 

  56. Pulaski L, Jedlitschky G, Leier I, Buchholz U, Keppler D (1996) Identification of the multidrug-resistance protein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. Eur J Biochem 241(2):644–648

    Article  CAS  PubMed  Google Scholar 

  57. Dekkers DWC, Comfurius P, Van Gool RGJ, Bevers EM, Zwaal RFA (2000) Multidrug resistance protein 1 regulates lipid asymmetry in erythrocyte membranes. Biochem J 350(2):531–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Neumann J, Rose-Sperling D, Hellmich UA (2017) Diverse relations between ABC transporters and lipids: an overview. Biochim Biophys Acta Biomembr 1859(4):605–618

    Article  CAS  PubMed  Google Scholar 

  59. Leimanis ML, Georges E (2007) ABCG2 membrane transporter in mature human erythrocytes is exclusively homodimer. Biochem Biophys Res Commun 354:345–350

    Article  CAS  PubMed  Google Scholar 

  60. Bassé F, Stout JG, Sims PJ, Wiedmer T (1996) Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid. J Biol Chem 271(29):17205–17210

    Article  PubMed  Google Scholar 

  61. Zhou Q, Zhao J, Stout JG, Luhm RA, Wiedmer T, Sims PJ (1997) Molecular cloning of human plasma membrane phospholipid scramblase. J Biol Chem 272(29):18240–18244

    Article  CAS  PubMed  Google Scholar 

  62. Suzuki J, Imanishi E, Nagata S (2014) Exposure of phosphatidylserine by Xk-related protein family members during apoptosis. J Biol Chem 289(44):30257–30267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468(7325):834–840

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S (2013) Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem 288(19):13305–13316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wiedmer T, Zhou Q, Kwoh DY, Sims PJ (2000) Identification of three new members of the phospholipid scramblase gene family. Biochim Biophys Acta Biomembr 1467(1):244–253

    Article  CAS  Google Scholar 

  66. Zhou Q, Zhao J, Wiedmer T, Sims PJ (2002) Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 99(11):4030–4038

    Article  CAS  PubMed  Google Scholar 

  67. Bevers EM, Williamson PL (2010) Phospholipid scramblase: an update. FEBS Lett 584(13):2724–2730

    Article  CAS  PubMed  Google Scholar 

  68. Stout JG, Bassé F, Luhm RA, Weiss HJ, Wiedmer T, Sims PJ (1997) Scott syndrome erythrocytes contain a membrane protein capable of mediating Ca2+-dependent transbilayer migration of membrane phospholipids. J Clin Investig 99(9):2232–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Burkhart JM, Vaudel M, Gambaryan S, Radau S, Walter U, Martens L et al (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120(15):e73-82

    Article  CAS  PubMed  Google Scholar 

  70. Zwaal RFA, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62(9):971–988

    Article  CAS  PubMed  Google Scholar 

  71. Bosman GJ (2004) Erythrocyte aging in sickle cell disease. Cell Mol Biol 50(1):81–86

    CAS  PubMed  Google Scholar 

  72. Hannemann A, Rees DC, Brewin JN, Noe A, Low B, Gibson JS (2018) Oxidative stress and phosphatidylserine exposure in red cells from patients with sickle cell anaemia. Br J Haematol 182(4):567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lubin B, Chiu D, Bastacky J, Roelofsen B, Van Deenen LL (1981) Abnormalities in membrane phospholipid organization in sickled erythrocytes. J Clin Investig 67(6):1643–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kean LS, Brown LE, Nichols JW, Mohandas N, Archer DR, Hsu LL (2002) Comparison of mechanisms of anemia in mice with sickle cell disease and β-thalassemia: peripheral destruction, ineffective erythropoiesis, and phospholipid scramblase-mediated phosphatidylserine exposure. Exp Hematol 30(5):394–402

    Article  CAS  PubMed  Google Scholar 

  75. Wanderley JLM, Damatta RA, Barcinski MA (2020) Apoptotic mimicry as a strategy for the establishment of parasitic infections: parasite- and host-derived phosphatidylserine as key molecule. Cell Commun Signal 18:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wanderley JLM, Moreira MEC, Benjamin A, Bonomo AC, Barcinski MA (2006) Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J Immunol 176(3):1834–1839

    Article  CAS  PubMed  Google Scholar 

  77. Balanco JMDF, Costa Moreira ME, Bonomo A, Bozza PT, Amarante-Mendes G, Pirmez C et al (2001) Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Curr Biol 11(23):1870–1873

    Article  CAS  Google Scholar 

  78. Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320(5875):531–535

    Article  CAS  PubMed  Google Scholar 

  79. Grüring C, Moon RW, Lim C, Holder AA, Blackman MJ, Duraisingh MT (2014) Human red blood cell-adapted Plasmodium knowlesi parasites: a new model system for malaria research. Cell Microbiol 16(5):612–620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kerlin DH, Gatton ML (2013) Preferential invasion by Plasmodium merozoites and the self-regulation of parasite burden. PLoS ONE 8(2):e57434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. White N (2013) Malaria. In: Farrar J, Hotez P, Junghanss T, Kang G, Lalloo D, White N (eds) Manson’s tropical diseases, 23rd edn. Elsevier Saunders, pp 532–600

    Google Scholar 

  82. Schwartz RS, Olson JA, Raventos-Suarez C, Yee M, Heath RH, Lubin B et al (1987) Altered plasma membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes. Blood 69(2):401–407

    Article  CAS  PubMed  Google Scholar 

  83. Maguire PA, Prudhomme J, Sherman IW (1991) Alterations in erythrocyte membrane phospholipid organization due to the intracellular growth of the human malaria parasite, Plasmodium falciparum. Parasitology 102(2):179–186

    Article  PubMed  Google Scholar 

  84. Joshi P, Gupta CM (1988) Abnormal membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes. Br J Haematol 68(2):255–259

    Article  CAS  PubMed  Google Scholar 

  85. Moll GN, Vial HJ, Bevers EM, Ancelin ML, Roelofsen B, Comfurius P et al (1990) Phospholipid asymmetry in the plasma membrane of malaria infected erythrocytes. Biochem Cell Biol 68:579–585

    Article  CAS  PubMed  Google Scholar 

  86. Subczynski WK, Pasenkiewicz-Gierula M, Widomska J, Mainali L, Raguz M (2017) High cholesterol/low cholesterol: effects in biological membranes: a review. Cell Biochem Biophys 75(3–4):369–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stillwell W (2016) Basic membrane properties of the fluid mosaic model. In: An introduction to biological membranes, 2nd edn, Chap 9. Elsevier, pp 135–180

  88. Kirk K, Horner HA, Kirk J (1996) Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol Biochem Parasitol 82(2):195–205

    Article  CAS  PubMed  Google Scholar 

  89. Preuss J, Jortzik E, Becker K (2012) Glucose-6-phosphate metabolism in Plasmodium falciparum. IUBMB Life 64(7):603–611

    Article  CAS  PubMed  Google Scholar 

  90. Roth EF Jr (1987) Malarial parasite hexokinase and hexokinase-dependent glutathione reduction in the Plasmodium falciparum-infected human erythrocyte. J Biol Chem 262(32):15678–15682

    Article  CAS  PubMed  Google Scholar 

  91. Roth EF (1990) Plasmodium falciparum carbohydrate metabolism: a connection between host cell and parasite. Blood Cells 16(2–3):453–460

    CAS  PubMed  Google Scholar 

  92. Staines HM, Chang W, Ellory JC, Tiffert T, Kirk K, Lew VL (1999) Passive Ca2+ transport and Ca2+-dependent K+ transport in Plasmodium falciparum-infected red cells. J Membr Biol 172:13–24

    Article  CAS  PubMed  Google Scholar 

  93. Lew VL (1971) On the ATP dependence of the Ca2+-induced increase in K+ permeability observed in human red cells. Biochim Biophys Acta 233:827–830

    Article  CAS  PubMed  Google Scholar 

  94. Tiffert T, Bookchin RM, Lew VL (2003) Calcium homeostasis in normal and abnormal human red cells. In: Bernhardt I, Ellory JC (eds) Red cell membrane transport in health and disease. Springer, Berlin, pp 373–405

    Chapter  Google Scholar 

  95. Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L (2013) Calcium in red blood cells—a perilous balance. Int J Mol Sci 14:9848–9872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Simões AP, Roelofsen B, Op den Kamp JAF (1992) Lipid compartmentalization in erythrocytes parasitized by Plasmodium spp. Parasitol Today 8(1):18–21

    Article  PubMed  Google Scholar 

  97. Taverne J, van Schie RCAA, Playfair JH, Reutelingsperger CPM (1996) Reply. Parasitol Today 12(3):122

    Article  Google Scholar 

  98. Yen TC, Wey SP, Liao CH, Yeh CH, Shen DW, Achilefu S et al (2010) Measurement of the binding parameters of annexin derivative-erythrocyte membrane interactions. Anal Biochem 406(1):70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van Engeland M, Nieland LJW, Ramaekers FCS, Schutte B, Reutelingsperger CPM (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  PubMed  Google Scholar 

  100. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C (1995) A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51

    Article  CAS  PubMed  Google Scholar 

  101. Taverne J, van Schie R, Playfair J, Reutelingsperger C (1995) Malaria: phosphatidylserine expression is not increased on the surface of parasitized erythrocytes. Parasitol Today 11(8):298–299

    Article  CAS  PubMed  Google Scholar 

  102. Sherman I, Prudhomme J, Fair J (1997) Altered membrane phospholipid asymmetry in Plasmodium falciparum-infected erythrocytes. Parasitol Today 13(6):242–243

    Article  CAS  PubMed  Google Scholar 

  103. Ayi K, Giribaldi G, Skorokhod A, Schwarzer E, Prendergast PT, Arese P (2002) 16α-Bromoepiandrosterone, an antimalarial analogue of the hormone dehydroepiandrosterone, enhances phagocytosis of ring stage parasitized erythrocytes: a novel mechanism for antimalarial activity. Antimicrob Agents Chemother 46(10):3180–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gelhaus C, Jacobs T, Andrä J, Leippe M (2008) The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 52(5):1713–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Eda S, Sherman IW (2002) Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell Physiol Biochem 12(5–6):373–384

    Article  CAS  PubMed  Google Scholar 

  106. Koka S, Huber SM, Boini KM, Lang C, Föller M, Lang F (2007) Lead decreases parasitemia and enhances survival of Plasmodium berghei-infected mice. Biochem Biophys Res Commun 363(3):484–489

    Article  CAS  PubMed  Google Scholar 

  107. Verhoeven AJ, Hilarius PM, Dekkers DWC, Lagerberg JWM, de Korte D (2006) Prolonged storage of red blood cells affects aminophospholipid translocase activity. Vox Sang 91(3):244–251

    Article  CAS  PubMed  Google Scholar 

  108. Romero PJ, Romero EA (1999) The role of calcium metabolism in human red blood cell ageing: a proposal. Blood Cells Mol Dis 25(1):9–19

    Article  CAS  PubMed  Google Scholar 

  109. Romero PJ, Romero EA (1997) Differences in Ca2+ pumping activity between sub-populations of human red cells. Cell Calcium 21(5):353–358

    Article  CAS  PubMed  Google Scholar 

  110. Lew VL, Daw N, Perdomo D, Etzion Z, Bookchin RM, Tiffert T (2003) Distribution of plasma membrane Ca2+ pump activity in normal human red blood cells. Blood 102(12):4206–4213

    Article  CAS  PubMed  Google Scholar 

  111. Bosman GJCGM, Cluitmans JCA, Groenen YAM, Werre JM, Willekens FLA, Novotný VMJ (2011) Susceptibility to hyperosmotic stress-induced phosphatidylserine exposure increases during red blood cell storage. Transfusion 51(5):1072–1078

    Article  PubMed  Google Scholar 

  112. Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci USA 95(6):3077–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dinkla S, Peppelman M, Der Raadt J, Atsma F, Novotńy VMJ, Van Kraaij MGJ et al (2014) Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality. Blood Transfus 12(2):204–209

    PubMed  PubMed Central  Google Scholar 

  114. Zhang R, Chandramohanadas R, Lim CT, Dao M (2018) Febrile temperature elevates the expression of phosphatidylserine on Plasmodium falciparum (FCR3CSA) infected red blood cell surface leading to increased cytoadhesion. Sci Rep 8:15022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Pattanapanyasat K, Sratongno P, Chimma P, Chitjamnongchai S, Polsrila K, Chotivanich K (2010) Febrile temperature but not proinflammatory cytokines promotes phosphatidylserine expression on Plasmodium falciparum malaria-infected red blood cells during parasite maturation. Cytom Part A 77A(6):515–523

    Article  CAS  Google Scholar 

  116. Engelbrecht D, Coetzer TL (2013) Turning up the heat: Heat stress induces markers of programmed cell death in Plasmodium falciparum in vitro. Cell Death Dis 4(12):e971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brand V, Sandu C, Duranton C, Tanneur V, Lang K, Huber S et al (2003) Dependence of Plasmodium falciparum in vitro growth on the cation permeability of the human host erythrocyte. Cell Physiol Biochem 13(6):347–356

    Article  CAS  PubMed  Google Scholar 

  118. Bobbala D, Alesutan I, Föller M, Tschan S, Huber SM, Lang F (2010) Protective effect of amiodarone in malaria. Acta Trop 116(1):39–44

    Article  CAS  PubMed  Google Scholar 

  119. Engelbrecht D, Coetzer TL (2016) Plasmodium falciparum exhibits markers of regulated cell death at high population density in vitro. Parasitol Int 65:715–727

    Article  CAS  PubMed  Google Scholar 

  120. Fraser M, Jing W, Bröer S, Kurth F, Sander LE, Matuschewski K et al (2021) Breakdown in membrane asymmetry regulation leads to monocyte recognition of P. falciparum-infected red blood cells. PLoS Pathog 17(2):e1009259

  121. Kasinathan RS, Föller M, Koka S, Huber SM, Lang F (2007) Inhibition of eryptosis and intraerythrocytic growth of Plasmodium falciparum by flufenamic acid. Naunyn Schmiedebergs Arch Pharmacol 374(4):255–264

    Article  CAS  PubMed  Google Scholar 

  122. Garcia CR, Dluzewski AR, Catalani LH, Burting R, Hoyland J, Mason WT (1996) Calcium homeostasis in intraerythrocytic malaria parasites. Eur J Cell Biol 71(4):409–413

    CAS  PubMed  Google Scholar 

  123. Alleva LM, Kirk K (2001) Calcium regulation in the intraerythrocytic malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 117(2):121–128

    Article  CAS  PubMed  Google Scholar 

  124. Rohrbach P, Friedrich O, Hentschel J, Plattner H, Fink RHA, Lanzer M (2005) Quantitative calcium measurements in subcellular compartments of Plasmodium falciparum-infected erythrocytes. J Biol Chem 280(30):27960–27969

    Article  CAS  PubMed  Google Scholar 

  125. Zipprer EM, Neggers M, Kushwaha A, Rayavara K, Desai SA (2014) A kinetic fluorescence assay reveals unusual features of Ca++ uptake in Plasmodium falciparum-infected erythrocytes. Malar J 13:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Adovelande J, Bastide B, Délèze J, Schrével J (1993) Cytosolic free calcium in Plasmodium falciparum-infected erythrocytes and the effect of verapamil: a cytofluorimetric study. Exp Parasitol 76(3):247–258

    Article  CAS  PubMed  Google Scholar 

  127. Lang KS, Duranton C, Poehlmann H, Myssina S, Bauer C, Lang F et al (2003) Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ 10(2):249–256

    Article  CAS  PubMed  Google Scholar 

  128. Das BS, Nanda NK (1999) Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans R Soc Trop Med Hyg 93(1):58–62

    Article  CAS  PubMed  Google Scholar 

  129. Kulkarni AG, Suryakar AN, Sardeshmukh AS, Rathi DB (2003) Studies on biochemical changes with special reference to oxidant and antioxidants in malaria patients. Indian J Clin Biochem 18(2):136–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rashid MK, Alam R, Khan S, Prakash V (2013) Oxidative stress marker and antioxidant status in falciparum malaria in relation to the intensity of parasitaemia. Int J Biol Med Res 4(3):3469–3471

    Google Scholar 

  131. Kremsner PG, Greve B, Lell B, Luckner D, Schmid D (2000) Malarial anaemia in African children associated with high oxygen-radical production. Lancet 355(9197):40–41

    Article  CAS  PubMed  Google Scholar 

  132. Totino PRR, Magalhães A das D, Alves EB, Costa MRF, de Lacerda MVG, Daniel-Ribeiro CT et al (2014) Plasmodium falciparum, but not P vivax, can induce erythrocytic apoptosis. Parasite Vectors 7:484

    Google Scholar 

  133. Lang KS, Myssina S, Brand V, Sandu C, Lang PA, Berchtold S et al (2004) Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ 11(2):231–243

    Article  CAS  PubMed  Google Scholar 

  134. Abed M, Towhid ST, Mia S, Pakladok T, Alesutan I, Borst O et al (2012) Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. Am J Physiol Cell Physiol 303(9):C991–C999

    Article  CAS  PubMed  Google Scholar 

  135. Lang E, Bissinger R, Gulbins E, Lang F (2015) Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 20(5):758–767

    Article  CAS  PubMed  Google Scholar 

  136. Aniweh Y, Gao X, Hao P, Meng W, Lai SK, Gunalan K et al (2017) P. falciparum RH5-Basigin interaction induces changes in the cytoskeleton of the host RBC. Cell Microbiol 19(9):e12747

    Article  CAS  Google Scholar 

  137. Maier AG, Duraisingh MT, Reeder JC, Patel SS, Kazura JW, Zimmerman PA et al (2003) Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med 9(1):87–92

    Article  CAS  PubMed  Google Scholar 

  138. Lobo CA, Rodriguez M, Reid M, Lustigman S (2003) Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood 101(11):4628–4631

    Article  CAS  PubMed  Google Scholar 

  139. Head DJ, Lee ZE, Poole J, Avent ND (2005) Expression of phosphatidylserine (PS) on wild-type and Gerbich variant erythrocytes following glycophorin-C (GPC) ligation. Br J Haematol 129(1):130–137

    Article  CAS  PubMed  Google Scholar 

  140. Boulet C, Doerig CD, Carvalho TG (2018) Manipulating eryptosis of human red blood cells: a novel antimalarial strategy? Front Cell Infect Microbiol 8:419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ho M, Webster HK (1989) Immunology of human malaria. A cellular perspective. Parasite Immunol 11(2):105–116

    Article  CAS  PubMed  Google Scholar 

  142. Pongponratn E, Riganti M, Bunnag D, Harinasuta T (1987) Spleen in falciparum malaria: ultrastructural study. Southeast Asian J Trop Med Public Heal 18(4):491–501

    CAS  Google Scholar 

  143. Taliaferro WH, Mulligan H (1937) The histopathology of malaria with special reference to the function and origin of macrophages in defence. Indian Med Res Mem 29:1–138

    Google Scholar 

  144. Fendel R, Brandts C, Rudat A, Kreidenweiss A, Steur C, Appelmann I et al (2010) Hemolysis is associated with low reticulocyte production index and predicts blood transfusion in severe malarial anemia. PLoS ONE 5(4):e10038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Smith TG, Serghides L, Patel SN, Febbraio M, Silverstein RL, Kain KC (2003) CD36-mediated nonopsonic phagocytosis of erythrocytes infected with stage I and IIA gametocytes of Plasmodium falciparum. Infect Immun 71(1):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McGilvray ID, Serghides L, Kapus A, Rotstein OD, Kain KC (2000) Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance. Blood 96(9):3231–3240

    Article  CAS  PubMed  Google Scholar 

  147. Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW et al (2004) CD36 mediates the phagocytosis of Plasmodium falciparum–infected erythrocytes by rodent macrophages. J Infect Dis 189(2):204–213

    Article  CAS  PubMed  Google Scholar 

  148. Turrini F, Ginsburg H, Bussolino F, Pescarmona GP, Serra MV, Arese P (1992) Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: involvement of immune and nonimmune determinants and dependence on parasite developmental stage. Blood 80(3):801–808

    Article  CAS  PubMed  Google Scholar 

  149. Mikołajczyk TP, Skrzeczyńska-Moncznik JE, Zarȩbski MA, Marewicz EA, Wiśniewska AM, Dziȩba M et al (2009) Interaction of human peripheral blood monocytes with apoptotic polymorphonuclear cells. Immunology 128(1):103–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Royo J, Rahabi M, Kamaliddin C, Ezinmegnon S, Olagnier D, Authier H et al (2019) Changes in monocyte subsets are associated with clinical outcomes in severe malarial anaemia and cerebral malaria. Sci Rep 9:17545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Facer CA, Agiostratidou G (1994) High levels of anti-phospholipid antibodies in uncomplicated and severe Plasmodium falciparum and in P. vivax malaria. Clin Exp Immunol 95(2):304–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Owens S, Chamley LW, Ordi J, Brabin BJ, Johnson PM (2005) The association of anti-phospholipid antibodies with parity in placental malaria. Clin Exp Immunol 142(3):512–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fernandez-Arias C, Rivera-Correa J, Gallego-Delgado J, Rudlaff R, Fernandez C, Roussel C et al (2016) Anti-self phosphatidylserine antibodies recognize uninfected erythrocytes promoting malarial anemia. Cell Host Microbe 19(2):194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rivera-Correa J, Mackroth MS, Jacobs T, Schulze zur Wiesch J, Rolling T, Rodriguez A (2019) Atypical memory B-cells are associated with Plasmodium falciparum anemia through anti-phosphatidylserine antibodies. eLife 8:e48309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rivera-Correa J, Conroy AL, Opoka RO, Batte A, Namazzi R, Ouma B et al (2019) Autoantibody levels are associated with acute kidney injury, anemia and post-discharge morbidity and mortality in Ugandan children with severe malaria. Sci Rep 9:14940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Cunningham D, Lawton J, Jarra W, Preiser P, Langhorne J (2010) The pir multigene family of Plasmodium: antigenic variation and beyond. Mol Biochem Parasitol 170(2):65–73

    Article  CAS  PubMed  Google Scholar 

  157. Hall N, Karras M, Raine JD, Carlton JM, Kooij TWA, Berriman M et al (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307(5706):82–86

    Article  CAS  PubMed  Google Scholar 

  158. Carvalho BO, Lopes SCP, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC et al (2010) On the cytoadhesion of Plasmodium vivax–infected erythrocytes. J Infect Dis 202(4):638–647

    Article  PubMed  Google Scholar 

  159. Totino PR, Lopes SC (2017) Insights into the cytoadherence phenomenon of Plasmodium vivax: The putative role of phosphatidylserine. Front Immunol 8:1148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Aikawa M, Brown A, Smith CD, Tegoshi T, Howard RJ, Hasler TH et al (1992) A primate model for human cerebral malaria: Plasmodium coatneyi-infected rhesus monkeys. Am J Trop Med Hyg 46(4):391–397

    Article  CAS  PubMed  Google Scholar 

  161. Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Büscher P, Que I et al (2005) Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc Natl Acad Sci USA 102(32):11468–11473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mota MM, Jarra W, Hirst E, Patnaik PK, Holder AA (2000) Plasmodium chabaudi-infected erythrocytes adhere to CD36 and bind to microvascular endothelial cells in an organ-specific way. Infect Immun 68(7):4135–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Franke-Fayard B, Fonager J, Braks A, Khan SM, Janse CJ (2010) Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria? PLoS Pathog 6(9):e1001032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Baker DA (2010) Malaria gametocytogenesis. Mol Biochem Parasitol 172(2):57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hon C, Matuschewski K (2020) Malaria according to GARP: a new trail towards anti-disease vaccination. Trends Parasitol 36(8):653–655

    Article  CAS  PubMed  Google Scholar 

  166. Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S, Rennenberg A et al (2006) Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313(5791):1287–1290

    Article  CAS  PubMed  Google Scholar 

  167. Graewe S, Rankin KE, Lehmann C, Deschermeier C, Hecht L, Froehlke U et al (2011) Hostile takeover by Plasmodium: reorganization of parasite and host cell membranes during liver stage egress. PLoS Pathog 7(9):e1002224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Al-Olayan EM, Williams GT, Hurd H (2002) Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. Int J Parasitol 32(9):1133–1143

    Article  CAS  PubMed  Google Scholar 

  169. Arambage SC, Grant KM, Pardo I, Ranford-Cartwright L, Hurd H (2009) Malaria ookinetes exhibit multiple markers for apoptosis-like programmed cell death in vitro. Parasite Vectors 2:32

    Article  CAS  Google Scholar 

  170. Ramphul UN, Garver LS, Molina-Cruz A, Canepa GE, Barillas-Mury C (2015) Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells. Proc Natl Acad Sci USA 112(5):1273–1280

    Article  CAS  PubMed  Google Scholar 

  171. Deponte M, Becker K (2004) Plasmodium falciparum—do killers commit suicide? Trends Parasitol 20(4):165–169

    Article  CAS  PubMed  Google Scholar 

  172. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511

    Article  CAS  PubMed  Google Scholar 

  173. Lamy A, Macarini-Bruzaferro E, Perálvarez-Marín A, le Maire M, Vázquez-Ibar JL (2021) ATP2, the essential P4-ATPase of malaria parasites, catalyzes lipid-dependent ATP hydrolysis in complex with a Cdc50 β-subunit. Emerg Microbes Infect 10(1):132–147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Kenthirapalan S, Waters AP, Matuschewski K, Kooij TWA (2016) Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite. Nat Commun 7:10519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR et al (2018) Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 360(6388):eaap7847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, Herd C et al (2017) Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 170(2):260–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kavishe RA, Van Den Heuvel JM, Van De Vegte-Bolmer M, Luty AJ, Russel FG, Koenderink JB (2009) Localization of the ATP-binding cassette (ABC) transport proteins PfMRP1, PfMRP2, and PfMDR5 at the Plasmodium falciparum plasma membrane. Malar J 8:205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Raj DK, Mu J, Jiang H, Kabat J, Singh S, Sullivan M et al (2009) Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J Biol Chem 284(12):7687–7696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Klokouzas A, Tiffert T, Van Schalkwyk D, Wu CP, Van Veen HW, Barrand MA et al (2004) Plasmodium falciparum expresses a multidrug resistance-associated protein. Biochem Biophys Res Commun 321(1):197–201

    Article  CAS  PubMed  Google Scholar 

  180. Rubio JP, Cowman AF (1994) Plasmodium falciparum: the pfmdr2 protein is not overexpressed in chloroquine-resistant isolates of the malaria parasite. Exp Parasitol 79(2):137–147

    Article  CAS  PubMed  Google Scholar 

  181. Martin RE (2020) The transportome of the malaria parasite. Biol Rev 95(2):305–332

    Article  PubMed  Google Scholar 

  182. Haase S, Condron M, Miller D, Cherkaoui D, Jordan S, Gulbis JM et al (2020) Identification and characterisation of a phospholipid scramblase in the malaria parasite Plasmodium falciparum. https://doi.org/10.1101/2020.06.22.165258

  183. Butthep P, Wanram S, Pattanapanyasat K, Vattanaviboon P, Fucharoen S, Wilairat P (2006) Cytoadherence between endothelial cells and P. falciparum infected and noninfected normal and thalassemic red blood cells. Cytom Part B Clin Cytom 70B(6):432–442

    Article  Google Scholar 

  184. Koka S, Föller M, Lamprecht G, Boini KM, Lang C, Huber SM et al (2007) Iron deficiency influences the course of malaria in Plasmodium berghei infected mice. Biochem Biophys Res Commun 357(3):608–614

    Article  CAS  PubMed  Google Scholar 

  185. Niemoeller OM, Föller M, Lang C, Huber SM, Lang F (2008) Retinoic acid induced suicidal erythrocyte death. Cell Physiol Biochem 21:193–202

    Article  CAS  PubMed  Google Scholar 

  186. Koka S, Lang C, Niemoeller OM, Boini KM, Nicolay JP, Huber SM et al (2008) Influence of NO synthase inhibitor L-NAME on parasitemia and survival of Plasmodium berghei infected mice. Cell Physiol Biochem 21(5–6):481–488

    Article  CAS  PubMed  Google Scholar 

  187. Koka S, Lang C, Boini K, Bobbala D, Huber S, Lang F (2008) Influence of chlorpromazine on eryptosis, parasitemia and survival of Plasmodium berghei infected mice. Cell Physiol Biochem 22(1–4):261–268

    Article  CAS  PubMed  Google Scholar 

  188. Brand V, Koka S, Lang C, Jendrossek V, Huber SM, Gulbins E et al (2008) Influence of amitriptyline on eryptosis, parasitemia and survival of Plasmodium berghei infected mice. Cell Physiol Biochem 22(5–6):405–412

    Article  CAS  PubMed  Google Scholar 

  189. Bobbala D, Koka S, Lang C, Boini KM, Huber SM, Lang F (2008) Effect of cyclosporine on parasitemia and survival of Plasmodium berghei infected mice. Biochem Biophys Res Commun 376(3):494–498

    Article  CAS  PubMed  Google Scholar 

  190. Koka S, Bobbala D, Lang C, Boini KM, Huber SM, Lang F (2009) Influence of paclitaxel on parasitemia and survival of Plasmodium berghei infected mice. Cell Physiol Biochem 23:191–198

    Article  CAS  PubMed  Google Scholar 

  191. Bobbala D, Koka S, Geiger C, Föller M, Huber SM, Lang F (2009) Azathioprine favourably influences the course of malaria. Malar J 8:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Lang PA, Kasinathan RS, Brand VB, Duranton C, Lang C, Koka S et al (2009) Accelerated clearance of Plasmodium-infected erythrocytes in sickle cell trait and Annexin-A7 deficiency. Cell Physiol Biochem 24(5–6):415–428

    Article  CAS  PubMed  Google Scholar 

  193. Alesutan I, Bobbala D, Qadri SM, Estremera A, Föller M, Lang F (2010) Beneficial effect of aurothiomalate on murine malaria. Malar J 9(1):118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Siraskar B, Ballal A, Bobbala D, Föller M, Lang F (2010) Effect of amphotericin B on parasitemia and survival of Plasmodium berghei-infected mice. Cell Physiol Biochem 26(3):347–354

    Article  CAS  PubMed  Google Scholar 

  195. Bobbala D, Alesutan I, Föller M, Huber SM, Lang F (2010) Effect of anandamide in Plasmodium berghei-infected mice. Cell Physiol Biochem 26(3):355–362

    Article  CAS  PubMed  Google Scholar 

  196. Ballal A, Bobbala D, Qadri SM, Föller M, Kempe D, Nasir O et al (2011) Anti-malarial effect of gum arabic. Malar J 10(1):139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Böttger E, Multhoff G, Kun JFJ, Esen M (2012) Plasmodium falciparum-infected erythrocytes induce granzyme B by NK cells through expression of host-Hsp70. PLoS ONE 7(3):e33774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Jiménez-Díaz MB, Ebert D, Salinas Y, Pradhan A, Lehane AM, Myrand-Lapierre ME et al (2014) (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc Natl Acad Sci USA 111(50):E5455–E5462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Andreas Herrmann for insightful discussions. This work was supported by the Alliance Berlin Canberra “Crossing Boundaries: Molecular Interactions in Malaria” which is co-funded by a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National University. Work in the Maier group is also supported by the Australian Research Council (DP180103212). M.F. is the recipient of an Australian Government Research Training Program Scholarship. The authors declare that they have no conflict of interest.

Funding

Not applicable for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Maier.

Ethics declarations

Conflict of interest

Not applicable for this study.

Ethics approval

Not applicable for this study.

Consent to participate

Not applicable for this study.

Consent for publication

Not applicable for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

18_2021_3799_MOESM1_ESM.docx

Table S1: Published studies which investigated membrane asymmetry in red blood cells infected with P. falciparum (iRBCs) and uninfected RBCs (uRBCs). Only results from RBCs not treated with modifying agent (drug, peptide, heat stress etc.) are shown. Percentages were calculated from tables or graphs using ImageJ where not specified in the text. PS phosphatidylserine; PE phosphatidylethanolamine; PC phosphatidylcholine; SM sphingomyelin; ATP adenosine triphosphate; enriched parasitaemias: increased by isolating iRBCs; effective parasitaemias: differentiated by DNA stain. (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, M., Matuschewski, K. & Maier, A.G. Of membranes and malaria: phospholipid asymmetry in Plasmodium falciparum-infected red blood cells. Cell. Mol. Life Sci. 78, 4545–4561 (2021). https://doi.org/10.1007/s00018-021-03799-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03799-6

Keywords

Navigation