Skip to main content
Log in

Structure–function analysis of naturally occurring apolipoprotein A-I L144R, A164S and L178P mutants provides insight on their role on HDL levels and cardiovascular risk

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Naturally occurring point mutations in apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), may affect plasma HDL-cholesterol levels and cardiovascular risk. Here, we evaluated the effect of human apoA-I mutations L144R (associated with low HDL-cholesterol), L178P (associated with low HDL-cholesterol and increased cardiovascular risk) and A164S (associated with increased cardiovascular risk and mortality without low HDL-cholesterol) on the structural integrity and functions of lipid-free and lipoprotein-associated apoA-I in an effort to explain the phenotypes of subjects carrying these mutations. All three mutants, in lipid-free form, presented structural and thermodynamic aberrations, with apoA-I[L178P] presenting the greatest thermodynamic destabilization. Additionally, apoA-I[L178P] displayed reduced ABCA1-mediated cholesterol efflux capacity. When in reconstituted HDL (rHDL), apoA-I[L144R] and apoA-I[L178P] were more thermodynamically destabilized compared to wild-type apoA-I, both displayed reduced SR-BI-mediated cholesterol efflux capacity and apoA-I[L144R] showed severe LCAT activation defect. ApoA-I[A164S] was thermodynamically unaffected when in rHDL, but exhibited a series of functional defects. Specifically, it had reduced ABCG1-mediated cholesterol and 7-ketocholesterol efflux capacity, failed to reduce ROS formation in endothelial cells and had reduced capacity to induce endothelial cell migration. Mechanistically, the latter was due to decreased capacity of rHDL-apoA-I[A164S] to activate Akt kinase possibly by interacting with endothelial LOX-1 receptor. The impaired capacity of rHDL-apoA-I[A164S] to preserve endothelial function may be related to the increased cardiovascular risk for this mutation. Overall, our structure–function analysis of L144R, A164S and L178P apoA-I mutants provides insights on how HDL-cholesterol levels and/or atheroprotective properties of apoA-I/HDL are impaired in carriers of these mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ABCA1:

ATP-binding cassette A1

ABCG1:

ATP-binding cassette G1

ANS:

8-anilino-1-naphthalenesulfonic acid

apoA-I:

Apolipoprotein A-I

C:

Cholesterol

CD:

Circular dichroism

cpt-cAMP:

8-(4-Chlorophenylthio)-cAMP

CVD:

Cardiovascular disease

DCF:

2′,7′-Dichlorofluorescein

DCFH-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DPBS:

Dulbecco’s phosphate-buffered saline

GdnHCl:

Guanidine hydrochloride

HCAEC:

Human coronary artery endothelial cells

HDL:

High-density lipoprotein

HDL-C:

HDL-cholesterol

IHD:

Ischemic heart disease

IMT:

Intima–media thickness

LCAT:

Lecithin:cholesterol acyltransferase

LOX-1:

Lectin-type oxidized low-density lipoprotein receptor 1

MDA:

Malondialdehyde

Ni-NTA:

Ni2+-nitrilotriacetic acid

oxPAPC:

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

rHDL:

Reconstituted HDL

ROS:

Reactive oxygen species

SR-BI:

Scavenger receptor class B type I

TBARS:

Thiobarbituric acid reactive substances

Trx:

Thioredoxin

WT:

Wild type

References

  1. Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A (2015) HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 224:53–111

    CAS  PubMed  Google Scholar 

  2. Siddiqi HK, Kiss D, Rader D (2015) HDL-cholesterol and cardiovascular disease: rethinking our approach. Curr Opin Cardiol 30:536–542

    PubMed  Google Scholar 

  3. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271:518–520

    CAS  PubMed  Google Scholar 

  4. Daniil G, Zannis VI, Chroni A (2013) Effect of apoA-I mutations in the capacity of reconstituted HDL to promote ABCG1-mediated cholesterol efflux. PLoS One 8:e67993

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mineo C, Shaul PW (2012) Novel biological functions of high-density lipoprotein cholesterol. Circ Res 111:1079–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Marz W, Kleber ME, Scharnagl H, Speer T, Zewinger S, Ritsch A, Parhofer KG et al (2017) HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol 106:663–675

    PubMed  PubMed Central  Google Scholar 

  7. Favari E, Thomas MJ, Sorci-Thomas MG (2018) High-density lipoprotein functionality as a new pharmacological target on cardiovascular disease: unifying mechanism that explains high-density lipoprotein protection toward the progression of atherosclerosis. J Cardiovasc Pharmacol 71:325–331

    CAS  PubMed  Google Scholar 

  8. Melchior JT, Walker RG, Cooke AL, Morris J, Castleberry M, Thompson TB, Jones MK et al (2017) A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state. Nat Struct Mol Biol 24:1093–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mei X, Atkinson D (2011) Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization. J Biol Chem 286:38570–38582

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mei X, Atkinson D (2015) Lipid-free apolipoprotein A-I structure: insights into HDL formation and atherosclerosis development. Arch Med Res 46:351–360

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Borhani DW, Rogers DP, Engler JA, Brouillette CG (1997) Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci USA 94:12291–12296

    CAS  PubMed  Google Scholar 

  12. Silva RA, Huang R, Morris J, Fang J, Gracheva EO, Ren G, Kontush A et al (2008) Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc Natl Acad Sci USA 105:12176–12181

    CAS  PubMed  Google Scholar 

  13. Huang R, Silva RA, Jerome WG, Kontush A, Chapman MJ, Curtiss LK, Hodges TJ et al (2011) Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol 18:416–422

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gursky O (2013) Crystal structure of Delta(185-243)ApoA-I suggests a mechanistic framework for the protein adaptation to the changing lipid load in good cholesterol: from flatland to sphereland via double belt, belt buckle, double hairpin and trefoil/tetrafoil. J Mol Biol 425:1–16

    CAS  PubMed  Google Scholar 

  15. Sorci-Thomas MG, Thomas MJ (2002) The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc Med 12:121–128

    CAS  PubMed  Google Scholar 

  16. Zannis VI, Chroni A, Krieger M (2006) Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med 84:276–294

    CAS  PubMed  Google Scholar 

  17. Chroni A, Kardassis D (2019) HDL dysfunction caused by mutations in apoA-I and other genes that are critical for HDL biogenesis and remodeling. Curr Med Chem 26:1544–1575

    CAS  PubMed  Google Scholar 

  18. Haase CL, Frikke-Schmidt R, Nordestgaard BG, Kateifides AK, Kardassis D, Nielsen LB, Andersen CB et al (2011) Mutation in APOA1 predicts increased risk of ischaemic heart disease and total mortality without low HDL cholesterol levels. J Intern Med 270:136–146

    CAS  PubMed  Google Scholar 

  19. Recalde D, Cenarro A, Garcia-Otin AL, Gomez-Coronado D, Civeira F, Pocovi M (2002) Analysis of apolipoprotein A-I, lecithin:cholesterol acyltransferase and glucocerebrosidase genes in hypoalphalipoproteinemia. Atherosclerosis 163:49–58

    CAS  PubMed  Google Scholar 

  20. Hovingh GK, Brownlie A, Bisoendial RJ, Dube MP, Levels JH, Petersen W, Dullaart RP et al (2004) A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial wall thickness, and premature coronary artery disease. J Am Coll Cardiol 44:1429–1435

    CAS  PubMed  Google Scholar 

  21. Gkolfinopoulou C, Bourtsala A, Chroni A (2020) Structural and functional basis for increased HDL-cholesterol levels due to the naturally occurring V19L mutation in human apolipoprotein A-I. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158593

    CAS  PubMed  Google Scholar 

  22. Argyri L, Skamnaki V, Stratikos E, Chroni A (2011) A simple approach for human recombinant apolipoprotein E4 expression and purification. Protein Expr Purif 79:251–257

    CAS  PubMed  Google Scholar 

  23. Fotakis P, Tiniakou I, Kateifides AK, Gkolfinopoulou C, Chroni A, Stratikos E, Zannis VI et al (2013) Significance of the hydrophobic residues 225–230 of apoA-I for the biogenesis of HDL. J Lipid Res 54:3293–3302

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Morrisett JD, David JS, Pownall HJ, Gotto AM Jr (1973) Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine. Biochemistry 12:1290–1299

    CAS  PubMed  Google Scholar 

  25. Gorshkova IN, Liadaki K, Gursky O, Atkinson D, Zannis VI (2000) Probing the lipid-free structure and stability of apolipoprotein A-I by mutation. Biochemistry 39:15910–15919

    CAS  PubMed  Google Scholar 

  26. Chroni A, Liu T, Gorshkova I, Kan HY, Uehara Y, von Eckardstein A, Zannis VI (2003) The central helices of apoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220-231 of the wild-type apoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo. J Biol Chem 278:6719–6730

    CAS  PubMed  Google Scholar 

  27. Dafnis I, Raftopoulou C, Mountaki C, Megalou E, Zannis VI, Chroni A (2018) ApoE isoforms and carboxyl-terminal-truncated apoE4 forms affect neuronal BACE1 levels and Abeta production independently of their cholesterol efflux capacity. Biochem J 475:1839–1859

    CAS  PubMed  Google Scholar 

  28. Chadwick AC, Sahoo D (2012) Functional characterization of newly-discovered mutations in human SR-BI. PLoS One 7:e45660

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lambert G, Chase MB, Dugi K, Bensadoun A, Brewer HB Jr, Santamarina-Fojo S (1999) Hepatic lipase promotes the selective uptake of high density lipoprotein-cholesteryl esters via the scavenger receptor B1. J Lipid Res 40:1294–1303

    CAS  PubMed  Google Scholar 

  30. Kim WS, Rahmanto AS, Kamili A, Rye KA, Guillemin GJ, Gelissen IC, Jessup W et al (2007) Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein E discs and suppression of amyloid-beta peptide generation. J Biol Chem 282:2851–2861

    CAS  PubMed  Google Scholar 

  31. Chroni A, Kan HY, Kypreos KE, Gorshkova IN, Shkodrani A, Zannis VI (2004) Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice. Biochemistry 43:10442–10457

    CAS  PubMed  Google Scholar 

  32. Seetharam D, Mineo C, Gormley AK, Gibson LL, Vongpatanasin W, Chambliss KL, Hahner LD et al (2006) High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I. Circ Res 98:63–72

    CAS  PubMed  Google Scholar 

  33. Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, Wenzel D et al (2013) Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128:2026–2038

    CAS  PubMed  Google Scholar 

  34. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  35. Dafnis I, Argyri L, Sagnou M, Tzinia A, Tsilibary EC, Stratikos E, Chroni A (2016) The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific. Sci Rep 6:30654

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gursky O, Atkinson D (1996) Thermal unfolding of human high-density apolipoprotein A-1: implications for a lipid-free molten globular state. Proc Natl Acad Sci USA 93:2991–2995

    CAS  PubMed  Google Scholar 

  37. Zhang X, Lei D, Zhang L, Rames M, Zhang S (2015) A model of lipid-free apolipoprotein A-I revealed by iterative molecular dynamics simulation. PLoS One 10:e0120233

    PubMed  PubMed Central  Google Scholar 

  38. Gorshkova IN, Liu T, Kan HY, Chroni A, Zannis VI, Atkinson D (2006) Structure and stability of apolipoprotein A-I in solution and in discoidal high-density lipoprotein probed by double charge ablation and deletion mutation. Biochemistry 45:1242–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bortnick AE, Rothblat GH, Stoudt G, Hoppe KL, Royer LJ, McNeish J, Francone OL (2000) The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines. J Biol Chem 275:28634–28640

    CAS  PubMed  Google Scholar 

  40. Favari E, Zanotti I, Zimetti F, Ronda N, Bernini F, Rothblat GH (2004) Probucol inhibits ABCA1-mediated cellular lipid efflux. Arterioscler Thromb Vasc Biol 24:2345–2350

    CAS  PubMed  Google Scholar 

  41. Hafiane A, Genest J (2015) HDL-mediated cellular cholesterol efflux assay method. Ann Clin Lab Sci 45:659–668

    CAS  PubMed  Google Scholar 

  42. Besler C, Luscher TF, Landmesser U (2012) Molecular mechanisms of vascular effects of High-density lipoprotein: alterations in cardiovascular disease. EMBO Mol Med 4:251–268

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Terasaka N, Yu S, Yvan-Charvet L, Wang N, Mzhavia N, Langlois R, Pagler T et al (2008) ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J Clin Investig 118:3701–3713

    CAS  PubMed  Google Scholar 

  44. Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, Chroni A et al (2011) Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Investig 121:2693–2708

    CAS  PubMed  Google Scholar 

  45. Soumyarani VS, Jayakumari N (2014) Oxidized HDL induces cytotoxic effects: implications for atherogenic mechanism. J Biochem Mol Toxicol 28:481–489

    CAS  PubMed  Google Scholar 

  46. Solati Z, Ravandi A (2019) Lipidomics of bioactive lipids in acute coronary syndromes. Int J Mol Sci 20:E1051

    PubMed  Google Scholar 

  47. Recalde D, Velez-Carrasco W, Civeira F, Cenarro A, Gomez-Coronado D, Ordovas JM, Pocovi M (2001) Enhanced fractional catabolic rate of apo A-I and apo A-II in heterozygous subjects for apo A-I(Zaragoza) (L144R). Atherosclerosis 154:613–623

    CAS  PubMed  Google Scholar 

  48. Daniil G, Phedonos AA, Holleboom AG, Motazacker MM, Argyri L, Kuivenhoven JA, Chroni A (2011) Characterization of antioxidant/anti-inflammatory properties and apoA-I-containing subpopulations of HDL from family subjects with monogenic low HDL disorders. Clin Chim Acta 412:1213–1220

    CAS  PubMed  Google Scholar 

  49. Dalla-Riva J, Lagerstedt JO, Petrlova J (2015) Structural and functional analysis of the apolipoprotein A-I A164S variant. PLoS One 10:e0143915

    PubMed  PubMed Central  Google Scholar 

  50. Assanasen C, Mineo C, Seetharam D, Yuhanna IS, Marcel YL, Connelly MA, Williams DL et al (2005) Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J Clin Investig 115:969–977

    CAS  PubMed  Google Scholar 

  51. Shi Y, Lv X, Liu Y, Li B, Liu M, Yan M, Liu Y et al (2018) Elevating ATP-binding cassette transporter G1 improves re-endothelialization function of endothelial progenitor cells via Lyn/Akt/eNOS in diabetic mice. FASEB J 32:6525–6536

    CAS  PubMed  Google Scholar 

  52. Marsche G, Levak-Frank S, Quehenberger O, Heller R, Sattler W, Malle E (2001) Identification of the human analog of SR-BI and LOX-1 as receptors for hypochlorite-modified high density lipoprotein on human umbilical venous endothelial cells. FASEB J 15:1095–1097

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dimitris Kardassis (Medical School of the University of Crete, Greece) and members of his lab for providing valuable help with the endothelial cell migration assay. We acknowledge support of this work by the projects: (a) “An Open-Access Research Infrastructure of Chemical Biology and Target-Based Screening Technologies for Human and Animal Health, Agriculture and the Environment (OPENSCREEN-GR)” (MIS 5002691) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund), (b) “The National Research Infrastructure on Integrated Structural Biology, Drug Screening Efforts and Drug target functional characterization (INSPIRED)” (MIS 5002550) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund), (c) “A Greek Research Infrastructure for Visualizing and Monitoring Fundamental Biological Processes (BioImaging-GR)” (MIS 5002755) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund) and (d) “CURE-PLaN” a grant from the Leducq Foundation for Cardiovascular Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeliki Chroni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gkolfinopoulou, C., Soukou, F., Dafnis, I. et al. Structure–function analysis of naturally occurring apolipoprotein A-I L144R, A164S and L178P mutants provides insight on their role on HDL levels and cardiovascular risk. Cell. Mol. Life Sci. 78, 1523–1544 (2021). https://doi.org/10.1007/s00018-020-03583-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03583-y

Keywords

Navigation