Skip to main content
Log in

Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Vertebrate cranial mesoderm is a discrete developmental unit compared to the mesoderm below the developing neck. An extraordinary feature of the cranial mesoderm is that it includes a common progenitor pool contributing to the chambered heart and the craniofacial skeletal muscles. This striking developmental potential and the excitement it generated led to advances in our understanding of cranial mesoderm developmental mechanism. Remarkably, recent findings have begun to unravel the origin of its distinct developmental characteristics. Here, we take a detailed view of the ontogenetic trajectory of cranial mesoderm and its regulatory network. Based on the emerging evidence, we propose that cranial and posterior mesoderm diverge at the earliest step of the process that patterns the mesoderm germ layer along the anterior–posterior body axis. Further, we discuss the latest evidence and their impact on our current understanding of the evolutionary origin of cranial mesoderm. Overall, the review highlights the findings from contemporary research, which lays the foundation to probe the molecular basis of unique developmental potential and evolutionary origin of cranial mesoderm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. *Studies in Ciona suggest that evolutionary precursors of neural crest and placode were already present in the ancestors of olfactores [3, 154, 155]. These reports provide reason to refine the idea of novelty of the embryonic cell types.

References

  1. Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science (80-) 220:268–273. https://doi.org/10.1126/science.220.4594.268

    Article  CAS  Google Scholar 

  2. Stolfi A et al (2010) Early chordate origins of the vertebrate second heart field. Science (80-). https://doi.org/10.1126/science.1190181

    Article  Google Scholar 

  3. Kaplan N, Razy-Krajka F, Christiaen L (2015) Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. Curr Opin Genet Dev 32:119–128. https://doi.org/10.1016/j.gde.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Delsuc F et al (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968. https://doi.org/10.1038/nature04336

    Article  CAS  PubMed  Google Scholar 

  5. Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138:2401–2415. https://doi.org/10.1242/dev.040972

    Article  CAS  PubMed  Google Scholar 

  6. Gopalakrishnan S, Comai G, Sambasivan R et al (2015) A cranial mesoderm origin for esophagus striated muscles. Dev Cell 34:694–704. https://doi.org/10.1016/j.devcel.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  7. Heude E, Tesarova M, Sefton EM et al (2018) Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. Elife 7:1–26. https://doi.org/10.7554/eLife.40179

    Article  Google Scholar 

  8. Lescroart F, Hamou W, Francou A et al (2015) Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium. Proc Natl Acad Sci 112:1446–1451. https://doi.org/10.1073/pnas.1424538112

    Article  CAS  PubMed  Google Scholar 

  9. Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168:257–276. https://doi.org/10.1002/aja.1001680302

    Article  CAS  PubMed  Google Scholar 

  10. Evans DJR, Noden DM (2006) Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn 235:1310–1325. https://doi.org/10.1002/dvdy.20663

    Article  PubMed  Google Scholar 

  11. Jacob M et al (1984) Ontogeny of avian extrinsic muscles. Cell Tissue Res. https://doi.org/10.1007/bf00228439

    Article  PubMed  Google Scholar 

  12. Couly GF, Coltey PM, Le Douarin NM (1992) The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114:1–15

    CAS  PubMed  Google Scholar 

  13. Kuratani S (2005) Craniofacial development and the evolution of the vertebrates: the old problems on a new background. Zoolog Sci 19:19. https://doi.org/10.2108/zsj.22.1

    Article  Google Scholar 

  14. Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218. https://doi.org/10.1002/dvdy.20697

    Article  CAS  PubMed  Google Scholar 

  15. Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    CAS  PubMed  Google Scholar 

  16. Bothe I, Ahmed MU, Winterbottom FL et al (2007) Extrinsic versus intrinsic cues in avian paraxial mesoderm patterning and differentiation. Dev Dyn 236:2397–2409. https://doi.org/10.1002/dvdy.21241

    Article  CAS  PubMed  Google Scholar 

  17. Noden DM, Trainor PA (2005) Relations and interactions between cranial mesoderm and neural crest populations. J Anat 207:575–601. https://doi.org/10.1111/j.1469-7580.2005.00473.x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mootoosamy RC, Dietrich S (2002) Distinct regulatory cascades for head and trunk myogenesis. Development 129:573–583

    CAS  PubMed  Google Scholar 

  19. Tzahor E, Kempf H, Mootoosamy RC et al (2003) Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev 17:3087–3099. https://doi.org/10.1101/gad.1154103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bothe I, Dietrich S (2006) The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev Dyn 235:2845–2860. https://doi.org/10.1002/dvdy.20903

    Article  CAS  PubMed  Google Scholar 

  21. Harel I, Maezawa Y, Avraham R et al (2012) Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. Proc Natl Acad Sci 109:18839–18844. https://doi.org/10.1073/pnas.1208690109

    Article  PubMed  Google Scholar 

  22. Lu J, Chang P, Valdez R et al (2001) Control of facial muscle development by MyoR and capsulin. Science 298:2378–2381. https://doi.org/10.1126/science.1078273

    Article  CAS  Google Scholar 

  23. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138. https://doi.org/10.1016/S0092-8674(00)80189-0

    Article  CAS  PubMed  Google Scholar 

  24. Kelly RG, Jerome-Majewska LA, Papaioannou VE (2004) The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum Mol Genet 13:2829–2840. https://doi.org/10.1093/hmg/ddh304

    Article  CAS  PubMed  Google Scholar 

  25. Shih HP, Gross MK, Kioussi C (2007) Cranial muscle defects of Pitx2 mutants result from specification defects in the first branchial arch. Proc Natl Acad Sci 104:5907–5912. https://doi.org/10.1073/pnas.0701122104

    Article  CAS  PubMed  Google Scholar 

  26. Dong F, Sun X, Liu W et al (2006) Pitx2 promotes development of splanchnic mesoderm-derived branchiomeric muscle. Development 133:4891–4899. https://doi.org/10.1242/dev.02693

    Article  CAS  PubMed  Google Scholar 

  27. Sambasivan R et al (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16:810–821. https://doi.org/10.1016/j.devcel.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  28. Cao J, Spielmann M, Qiu X et al (2019) The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496–502. https://doi.org/10.1038/s41586-019-0969-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kelly RG, Brown NA, Buckingham ME, Kingdom U (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    Article  CAS  Google Scholar 

  30. Lescroart F, Kelly RG, Le Garrec J-F et al (2010) Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137:3269–3279. https://doi.org/10.1242/dev.050674

    Article  CAS  PubMed  Google Scholar 

  31. Lescroart F, Chabab S, Lin X et al (2014) Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol 16:829–840. https://doi.org/10.1038/ncb3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zaffran S, Odelin G, Stefanovic S et al (2018) Ectopic expression of Hoxb1 induces cardiac and craniofacial malformations. Genesis 56:1–13. https://doi.org/10.1002/dvg.23221

    Article  CAS  Google Scholar 

  33. Kelly RG, Buckingham ME (2002) The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet 18:210–216. https://doi.org/10.1016/S0168-9525(02)02642-2

    Article  CAS  PubMed  Google Scholar 

  34. Tirosh-Finkel L (2006) Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133:1943–1953. https://doi.org/10.1242/dev.02365

    Article  CAS  PubMed  Google Scholar 

  35. Nathan E, Monovich A, Tirosh-Finkel L et al (2008) The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 135:647–657. https://doi.org/10.1242/dev.007989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grifone R, Kelly RG (2007) Heartening news for head muscle development. Trends Genet 23:365–369. https://doi.org/10.1016/j.tig.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  37. Diogo R, Kelly RG, Christiaen L et al (2015) A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520:466–473. https://doi.org/10.1038/nature14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10:91–103. https://doi.org/10.1038/nrm2618

    Article  CAS  PubMed  Google Scholar 

  39. Ramkumar and Anderson (2011) SnapShot: mouse primitive streak. Cell 146:488. https://doi.org/10.1016/j.cell.2011.07.028

    Article  PubMed  Google Scholar 

  40. Kinder SJ, Tsang TE, Quinlan GA et al (1999) The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126:4691–4701

    CAS  PubMed  Google Scholar 

  41. Tam PP, Beddington RS (1987) The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99:109–126

    CAS  PubMed  Google Scholar 

  42. Lawson KA, Pedersen RA (1992) Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. In: Ciba foundation symposium, pp 3–26

  43. Tam PP, Parameswaran M, Kinder SJ, Weinberger RP (1997) The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124:1631–1642

    CAS  PubMed  Google Scholar 

  44. Yang L, Soonpaa MH, Adler ED et al (2008) Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature 453:524–528. https://doi.org/10.1038/nature06894

    Article  CAS  PubMed  Google Scholar 

  45. Rao J, Pfeiffer MJ, Frank S et al (2016) Stepwise clearance of repressive roadblocks drives cardiac induction in human ESCs. Cell Stem Cell 18:341–353. https://doi.org/10.1016/j.stem.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  46. Mendjan S, Mascetti VL, Ortmann D et al (2014) NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 15:310–325. https://doi.org/10.1016/j.stem.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  47. Peng G, Suo S, Chen J et al (2016) Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev Cell 36:681–697. https://doi.org/10.1016/j.devcel.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  48. Vermillion KL, Bacher R, Tannenbaum AP et al (2018) Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes. Dev Biol 439:30–41. https://doi.org/10.1016/j.ydbio.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  49. Pijuan-Sala B, Griffiths JA, Guibentif C et al (2019) A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566:490–495. https://doi.org/10.1038/s41586-019-0933-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saykali B, Mathiah N, Nahaboo W et al (2019) Distinct mesoderm migration phenotypes in extra-embryonic and embryonic regions of the early mouse embryo. Elife 8:1–27. https://doi.org/10.7554/eLife.42434

    Article  Google Scholar 

  51. Trainor PA, Tan SS, Tam PP (1994) Cranial paraxial mesoderm: regionalisation of cell fate and impact on craniofacial development in mouse embryos. Development 120:2397–2408

    CAS  PubMed  Google Scholar 

  52. Parameswaran M, Tam PPL (1995) Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 17:16–28. https://doi.org/10.1002/dvg.1020170104

    Article  CAS  PubMed  Google Scholar 

  53. Nandkishore N, Vyas B, Javali A et al (2018) Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates. Development 4529:4522–4529. https://doi.org/10.1242/dev.173187

    Article  Google Scholar 

  54. Takaoka K, Yamamoto M, Hamada H (2011) Origin and role of distal visceral endoderm, a group of cells that determines anterior-posterior polarity of the mouse embryo. Nat Cell Biol 13:743–752. https://doi.org/10.1038/ncb2251

    Article  CAS  PubMed  Google Scholar 

  55. Meno C, Gritsman K, Ohishi S et al (1999) Mouse lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4:287–298. https://doi.org/10.1016/S1097-2765(00)80331-7

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto M, Saijoh Y, Perea-Gomez A et al (2004) Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428:387–392. https://doi.org/10.1038/nature02418

    Article  CAS  PubMed  Google Scholar 

  57. Finley KR, Tennessen J, Shawlot W (2003) The mouse Secreted frizzled-related protein 5 gene is expressed in the anterior visceral endoderm and foregut endoderm during early post-implantation development. Gene Expr Patterns 3:681–684. https://doi.org/10.1016/S1567-133X(03)00091-7

    Article  CAS  PubMed  Google Scholar 

  58. Kemp C, Willems E, Abdo S et al (2005) Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development. Dev Dyn 233:1064–1075. https://doi.org/10.1002/dvdy.20408

    Article  CAS  PubMed  Google Scholar 

  59. Perea-Gomez A, Camus A, Moreau A et al (2004) Initiation of gastrulation in the mouse embryo is preceded by an apparent shift in the orientation of the anterior-posterior axis. Curr Biol 14:197–207. https://doi.org/10.1016/S0960-9822(04)00044-2

    Article  CAS  PubMed  Google Scholar 

  60. Kimura C, Yoshinaga K, Tian E et al (2000) Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev Biol 225:304–321. https://doi.org/10.1006/dbio.2000.9835

    Article  CAS  PubMed  Google Scholar 

  61. Perea-Gomez A, Vella FDJ, Shawlot W et al (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3:745–756. https://doi.org/10.1016/S1534-5807(02)00321-0

    Article  CAS  PubMed  Google Scholar 

  62. Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496. https://doi.org/10.1016/S0960-9822(96)00753-1

    Article  CAS  PubMed  Google Scholar 

  63. Perea-Gomez Rhinn M, Ang SL (2001) Role of the anterior visceral endoderm in restricting posterior signals in the mouse embryo. Int J Dev Biol 45:311–320

    CAS  PubMed  Google Scholar 

  64. Perea-Gomez Lawson KA, Rhinn M et al (2001) Otx2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo. Development 128:753–765

    CAS  PubMed  Google Scholar 

  65. Brennan J, Lu CC, Norris DP et al (2001) Nodal signalling in the epiblast patterns the early mouse embryo Nature. 8716:965–969

    Google Scholar 

  66. Tortelote GG, Hernández-Hernández JM, Quaresma AJC et al (2013) Wnt3 function in the epiblast is required for the maintenance but not the initiation of gastrulation in mice. Dev Biol 374:164–173. https://doi.org/10.1016/j.ydbio.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  67. Barrow JR, Howell WD, Rule M et al (2007) Wnt3 signaling in the epiblast is required for proper orientation of the anteroposterior axis. Dev Biol 312:312–320. https://doi.org/10.1016/j.ydbio.2007.09.030

    Article  CAS  PubMed  Google Scholar 

  68. Tam PP, Loebel DA, Tanaka SS (2006) Building the mouse gastrula: signals, asymmetry and lineages. Curr Opin Genet Dev 16:419–425. https://doi.org/10.1016/j.gde.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  69. Rivera-Pérez JA, Magnuson T (2005) Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev Biol 288:363–371. https://doi.org/10.1016/j.ydbio.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  70. Mohamed OA, Clarke HJ, Dufort D (2004) β-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev Dyn 231:416–424. https://doi.org/10.1002/dvdy.20135

    Article  CAS  PubMed  Google Scholar 

  71. Kelly OG (2004) The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131:2803–2815. https://doi.org/10.1242/dev.01137

    Article  CAS  PubMed  Google Scholar 

  72. Andre P, Song H, Kim W et al (2015) Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation. Development 142:1516–1527. https://doi.org/10.1242/dev.119065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hoshino H, Shioi G, Aizawa S (2015) AVE protein expression and visceral endoderm cell behavior during anterior-posterior axis formation in mouse embryos: asymmetry in OTX2 and DKK1 expression. Dev Biol 402:175–191. https://doi.org/10.1016/j.ydbio.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  74. Schneider VA, Mercola M (1999) Spatially distinct head and heart inducers within the Xenopus organizer region. Curr Biol 9:800–809. https://doi.org/10.1016/S0960-9822(99)80363-7

    Article  CAS  PubMed  Google Scholar 

  75. Schneider and Mercola (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15:304–315. https://doi.org/10.1101/gad.855601

    Article  PubMed  Google Scholar 

  76. Mazzotta S, Neves C, Bonner RJ et al (2016) Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development. Stem Cell Rep 7:764–776. https://doi.org/10.1016/j.stemcr.2016.08.008

    Article  CAS  Google Scholar 

  77. Marvin MJ, Di Rocco G, Gardiner A et al (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15:316–327. https://doi.org/10.1101/gad.855501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Palpant NJ, Pabon L, Roberts M et al (2015) Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development 128:e1.2. https://doi.org/10.1242/jcs.180588

    Article  Google Scholar 

  79. Minami I, Yamada K, Otsuji TG et al (2012) A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep 2:1448–1460. https://doi.org/10.1016/j.celrep.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  80. Münsterberg AE, Kitajewski J, Bumcrot DA et al (1995) Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9:2911–2922. https://doi.org/10.1101/gad.9.23.2911

    Article  PubMed  Google Scholar 

  81. Capdevila J, Tabin C, Johnson RL (1998) Control of dorsoventral somite patterning by Wnt-1 and β-catenin. Dev Biol 193:182–194. https://doi.org/10.1006/dbio.1997.8806

    Article  CAS  PubMed  Google Scholar 

  82. Ikeya M, Takada S (1998) Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125:4969–4976

    CAS  PubMed  Google Scholar 

  83. Tajbakhsh S, Borello U, Vivarelli E et al (1998) Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125:4155–4162

    CAS  PubMed  Google Scholar 

  84. Cossu G, Borello U (1999) Wnt signaling and the activation of myogenesis in mammals. EMBO J 18:6867–6872

    Article  CAS  Google Scholar 

  85. Takada S, Stark KL, Shea MJ et al (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174–189

    Article  CAS  Google Scholar 

  86. Dunty WC, Biris KK, Chalamalasetty RB et al (2007) Wnt3a/β-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135:85–94. https://doi.org/10.1242/dev.009266

    Article  CAS  PubMed  Google Scholar 

  87. Yamaguchi TP, Takada S, Yoshikawa Y et al (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13:3185–3190. https://doi.org/10.1101/gad.13.24.3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Herrmann BG (1991) Expression pattern of the Brachyury gene in whole-mount TWis/TWis mutant embryos. Development 113:913–917

    CAS  PubMed  Google Scholar 

  89. Chapman DL, Agulnik I, Hancock S et al (1996) Tbx6, a mouse T-box gene implicated in paraxial mesoderm formation at gastrulation. Dev Biol 180:534–542. https://doi.org/10.1006/dbio.1996.0326

    Article  CAS  PubMed  Google Scholar 

  90. Javali A, Misra A, Leonavicius K et al (2017) Co-expression of Tbx6 and Sox2 identifies a novel transient neuromesoderm progenitor cell state. Development 144:4522–4529. https://doi.org/10.1242/dev.153262

    Article  CAS  PubMed  Google Scholar 

  91. Boulet AM, Capecchi MR (2012) Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo. Dev Biol 371:235–245. https://doi.org/10.1016/j.ydbio.2012.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ciruna B, Rossant J (2001) FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1:37–49. https://doi.org/10.1016/S1534-5807(01)00017-X

    Article  CAS  PubMed  Google Scholar 

  93. Martin BL, Kimelman D (2012) Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev Cell 22:223–232. https://doi.org/10.1016/j.devcel.2011.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Turner DA, Hayward PC, Baillie-Johnson P et al (2014) Wnt/β-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Development 141:4243–4253. https://doi.org/10.1242/dev.112979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garriock RJ, Chalamalasetty RB, Kennedy MW et al (2015) Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation. Development 142:1628–1638. https://doi.org/10.1242/dev.111922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gouti M, Tsakiridis A, Wymeersch FJ et al (2014) In vitro generation of neuromesodermal progenitors reveals distinct roles for Wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001937

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cambray N, Wilson V (2007) Two distinct sources for a population of maturing axial progenitors. Development 134:2829–2840. https://doi.org/10.1242/dev.02877

    Article  CAS  PubMed  Google Scholar 

  98. Tzouanacou E, Wegener A, Wymeersch FJ et al (2009) Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17:365–376. https://doi.org/10.1016/j.devcel.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  99. McGrew MJ, Sherman A, Lillico SG et al (2008) Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135:2289–2299. https://doi.org/10.1242/dev.022020

    Article  CAS  PubMed  Google Scholar 

  100. Henrique D, Abranches E, Verrier L, Storey KG (2015) Neuromesodermal progenitors and the making of the spinal cord. Development 142:2864–2875. https://doi.org/10.1242/dev.119768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Steventon B, Martinez Arias A (2017) Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord. Dev Biol 432:3–13. https://doi.org/10.1016/j.ydbio.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  102. Chapman DL et al (1998) Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 391:695–697. https://doi.org/10.1038/35624

    Article  CAS  PubMed  Google Scholar 

  103. King T, Beddington RSP, Brown NA (1998) The role of the brachyury gene in heart development and left-right specification in the mouse. Mech Dev 79:29–37. https://doi.org/10.1016/S0925-4773(98)00166-X

    Article  CAS  PubMed  Google Scholar 

  104. Kitaguchi T, Mizugishi K, Hatayama M et al (2002) Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry. Dev Growth Differ 44:55–61. https://doi.org/10.1046/j.1440-169x.2002.00624.x

    Article  CAS  PubMed  Google Scholar 

  105. Hadjantonakis AK, Pisano E, Papaioannou VE (2008) Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS One. https://doi.org/10.1371/journal.pone.0002511

    Article  PubMed  PubMed Central  Google Scholar 

  106. Liu P, Wakamiya M, Shea MJ et al (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365. https://doi.org/10.1038/11932

    Article  CAS  PubMed  Google Scholar 

  107. Galceran J, Fariñas I, Depew MJ et al (1999) Wnt3a−/−-like phenotype and limb deficiency in Lef−/−Tcf1−/− mice. Genes Dev 13:709–717

    Article  CAS  Google Scholar 

  108. De Robertis EM (2008) Evo-Devo: variations on ancestral themes. Cell 132:185–195. https://doi.org/10.1016/j.cell.2008.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Niehrs C (2010) On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137:845–857. https://doi.org/10.1242/dev.039651

    Article  CAS  PubMed  Google Scholar 

  110. Petersen CP, Reddien PW (2009) wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068. https://doi.org/10.1016/j.cell.2009.11.035

    Article  CAS  PubMed  Google Scholar 

  111. Ikeya M, Takada S (2001) Wnt-3a is required for somite specification along the anteroposterior axis of mouse embryo and for regulation of Cdx-1 expression. Mech Dev 103:27–33

    Article  CAS  Google Scholar 

  112. Nordström U, Maier E, Jessell TM, Edlund T (2006) An early role for Wnt signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity. PLoS Biol 4:1438–1452. https://doi.org/10.1371/journal.pbio.0040252

    Article  CAS  Google Scholar 

  113. Pilon N, Oh K, Sylvestre JR et al (2006) Cdx4 is a direct target of the canonical Wnt pathway. Dev Biol 289:55–63. https://doi.org/10.1016/j.ydbio.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  114. Shimizu T, Bae YK, Muraoka O, Hibi M (2005) Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev Biol 279:125–141. https://doi.org/10.1016/j.ydbio.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  115. van de Ven C, Bialecka M, Neijts R et al (2011) Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development 138:3859. https://doi.org/10.1242/dev.072462

    Article  CAS  Google Scholar 

  116. van den Akker E, Forlani S, Chawengsaksophak K et al (2002) Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 129:2181–2193

    PubMed  Google Scholar 

  117. Neijts R, Amin S, van Rooijen C, Deschamps J (2017) Cdx is crucial for the timing mechanism driving colinear Hox activation and defines a trunk segment in the Hox cluster topology. Dev Biol 422:146–154. https://doi.org/10.1016/j.ydbio.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  118. Young T, Rowland JE, van de Ven C et al (2009) Cdx and hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell 17:516–526. https://doi.org/10.1016/j.devcel.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  119. van Rooijen C, Simmini S, Bialecka M et al (2012) Evolutionarily conserved requirement of Cdx for post-occipital tissue emergence. Development 139:2576–2583. https://doi.org/10.1242/dev.079848

    Article  CAS  PubMed  Google Scholar 

  120. Ciruna BG, Rossant J (1999) Expression of the T-box gene eomesodermin during early mouse development. Mech Dev 81:199–203. https://doi.org/10.1016/S0925-4773(98)00243-3

    Article  CAS  PubMed  Google Scholar 

  121. Saga Y, Hata N, Taketo MM et al (1996) MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development 122:2769–2778

    CAS  PubMed  Google Scholar 

  122. Saga Y, Miyagawa-Tomita S, Takagi A et al (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126:3437–3447

    CAS  PubMed  Google Scholar 

  123. Harel I, Nathan E, Tirosh-Finkel L et al (2009) Distinct origins and genetic programs of head muscle satellite cells. Dev Cell 16:822–832. https://doi.org/10.1016/j.devcel.2009.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kitajima S, Takagi A, Inoue T, Saga Y (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127:3215–3226

    CAS  PubMed  Google Scholar 

  125. Chan SSK, Shi X, Toyama A et al (2013) Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 12:587–601. https://doi.org/10.1016/j.stem.2013.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Satou Y et al (2004) The ascidian Mesp gene specifies heart precursor cells. Development 131:2533–2541. https://doi.org/10.1242/dev.01145

    Article  CAS  PubMed  Google Scholar 

  127. Costello I, Pimeisl IM, Dräger S et al (2011) The T-box transcription factor eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol 13:1084–1092. https://doi.org/10.1038/ncb2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Arnold SJ, Hofmann UK, Bikoff EK, Robertson EJ (2008) Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse. Development 135:501–511. https://doi.org/10.1242/dev.014357

    Article  CAS  PubMed  Google Scholar 

  129. Bondue A, Blanpain C (2010) Mesp1: a key regulator of cardiovascular lineage commitment. Circ Res 107:1414–1427. https://doi.org/10.1161/CIRCRESAHA.110.227058

    Article  CAS  PubMed  Google Scholar 

  130. Hacker A, Guthrie S (1998) A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125:3461–3472

    CAS  PubMed  Google Scholar 

  131. Rios AC, Serralbo O, Salgado D, Marcelle C (2011) Neural crest regulates myogenesis through the transient activation of NOTCH. Nature 473:532–535. https://doi.org/10.1038/nature09970

    Article  CAS  PubMed  Google Scholar 

  132. Köntges G, Lumsden A (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122:3229–3242

    PubMed  Google Scholar 

  133. Grenier J, Teillet MA, Grifone R et al (2009) Relationship between neural crest cells and cranial mesoderm during head muscle development. PLoS One. https://doi.org/10.1371/journal.pone.0004381

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rinon A, Lazar S, Marshall H et al (2007) Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development 134:3065–3075. https://doi.org/10.1242/dev.002501

    Article  CAS  PubMed  Google Scholar 

  135. Rios AC, Marcelle C (2009) Head muscles: aliens who came in from the cold? Dev Cell 16:779–780. https://doi.org/10.1016/j.devcel.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  136. Kuratani S, Schilling T (2008) Head segmentation in vertebrates. Integr Comp Biol 48:604–610. https://doi.org/10.1093/icb/icn036

    Article  PubMed  PubMed Central  Google Scholar 

  137. Onai T, Adachi N, Kuratani S (2017) Metamerism in cephalochordates and the problem of the vertebrate head. Int J Dev Biol 61:621–632. https://doi.org/10.1387/ijdb.170121to

    Article  PubMed  Google Scholar 

  138. Holland LZ, Holland ND, Gilland E (2008) Amphioxus and the evolution of head segmentation. Integr Comp Biol 48:630–646. https://doi.org/10.1093/icb/icn060

    Article  PubMed  Google Scholar 

  139. Aldea D, Subirana L, Keime C et al (2019) Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm. Nat Ecol Evol. https://doi.org/10.1038/s41559-019-0933-z

    Article  PubMed  Google Scholar 

  140. Bertrand S, Camasses A, Somorjai I et al (2011) Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci 108:9160–9165. https://doi.org/10.1073/pnas.1014235108

    Article  PubMed  Google Scholar 

  141. Holland ND, Venkatesh TV, Holland LZ et al (2003) AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol 255:128–137. https://doi.org/10.1016/S0012-1606(02)00050-7

    Article  CAS  PubMed  Google Scholar 

  142. Pascual-Anaya J, Albuixech-Crespo B, Somorjai IML et al (2013) The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Dev Biol 375:182–192. https://doi.org/10.1016/j.ydbio.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  143. Achim K, Arendt D (2014) Structural evolution of cell types by step-wise assembly of cellular modules. Curr Opin Genet Dev 27:102–108. https://doi.org/10.1016/j.gde.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  144. Brunet T, Fischer AHL, Steinmetz PRH et al (2016) The evolutionary origin of bilaterian smooth and striated myocytes. Elife 5:1–24. https://doi.org/10.7554/eLife.19607

    Article  Google Scholar 

  145. Amacher SL, Draper BW, Summers BR, Kimmel CB (2002) The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development 3323:3311–3323

    Google Scholar 

  146. Baillie-johnson P, Hayward P (2018) The chick caudolateral epiblast acts as a permissive niche for generating neuromesodermal progenitor behaviours. Cell Tissue Organs. https://doi.org/10.1159/000494769

    Article  Google Scholar 

  147. Attardi A, Fulton T, Florescu M et al (2019) Correction: neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 146:dev175620. https://doi.org/10.1242/dev.175620

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ansari S, Troelenberg N, Dao VA et al (2018) Double abdomen in a short-germ insect: zygotic control of axis formation revealed in the beetle Tribolium castaneum. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1716512115

    Article  PubMed  Google Scholar 

  149. Fritzenwanker JH, Uhlinger KR, Gerhart J et al (2019) Untangling posterior growth and segmentation by analyzing mechanisms of axis elongation in hemichordates. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1817496116

    Article  PubMed  Google Scholar 

  150. Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5:425–434. https://doi.org/10.1038/nrg1347

    Article  CAS  PubMed  Google Scholar 

  151. De Robertis E (2010) Wnt signaling in axial patterning and regeneration: lessons from planaria. Sci Signal 3:2008–2011. https://doi.org/10.1126/scisignal.3127pe21

    Article  CAS  Google Scholar 

  152. Loh KM, van Amerongen R, Nusse R (2016) Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev Cell 38:643–655. https://doi.org/10.1016/j.devcel.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  153. Yoshida T, Vivatbutsiri P, Morriss-Kay G et al (2008) Cell lineage in mammalian craniofacial mesenchyme. Mech Dev 125:797–808. https://doi.org/10.1016/j.mod.2008.06.007

    Article  CAS  PubMed  Google Scholar 

  154. Graham A, Shimeld SM (2013) The origin and evolution of the ectodermal placodes. J Anat 222:32–40. https://doi.org/10.1111/j.1469-7580.2012.01506.x

    Article  PubMed  Google Scholar 

  155. Abitua PB, Wagner E, Navarrete IA, Levine M (2012) Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492:104–107. https://doi.org/10.1038/nature11589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkumar Sambasivan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, B., Nandkishore, N. & Sambasivan, R. Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin. Cell. Mol. Life Sci. 77, 1933–1945 (2020). https://doi.org/10.1007/s00018-019-03373-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03373-1

Keywords

Navigation