Skip to main content
Log in

Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

We investigated the role of autophagy, a controlled lysosomal degradation of cellular macromolecules and organelles, in glutamate excitotoxicity during nutrient deprivation in vitro. The incubation in low-glucose serum/amino acid-free cell culture medium synergized with glutamate in increasing AMP/ATP ratio and causing excitotoxic necrosis in SH-SY5Y human neuroblastoma cells. Glutamate suppressed starvation-triggered autophagy, as confirmed by diminished intracellular acidification, lower LC3 punctuation and LC3-I conversion to autophagosome-associated LC3-II, reduced expression of proautophagic beclin-1 and ATG5, increase of the selective autophagic target NBR1, and decreased number of autophagic vesicles. Similar results were observed in PC12 rat pheochromocytoma cells. Both glutamate-mediated excitotoxicity and autophagy inhibition in starved SH-SY5Y cells were reverted by NMDA antagonist memantine and mimicked by NMDA agonists D-aspartate and ibotenate. Glutamate reduced starvation-triggered phosphorylation of the energy sensor AMP-activated protein kinase (AMPK) without affecting the activity of mammalian target of rapamycin complex 1, a major negative regulator of autophagy. This was associated with reduced mRNA levels of autophagy transcriptional activators (FOXO3, ATF4) and molecules involved in autophagy initiation (ULK1, ATG13, FIP200), autophagosome nucleation/elongation (ATG14, beclin-1, ATG5), and autophagic cargo delivery to autophagosomes (SQSTM1). Glutamate-mediated transcriptional repression of autophagy was alleviated by overexpression of constitutively active AMPK. Genetic or pharmacological AMPK activation by AMPK overexpression or metformin, as well as genetic or pharmacological autophagy induction by TFEB overexpression or lithium chloride, reduced the sensitivity of nutrient-deprived SH-SY5Y cells to glutamate excitotoxicity. These data indicate that transcriptional inhibition of AMPK-dependent cytoprotective autophagy is involved in glutamate-mediated excitotoxicity during nutrient deprivation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fullgrabe J, Ghislat G, Cho DH, Rubinsztein DC (2016) Transcriptional regulation of mammalian autophagy at a glance. J Cell Sci 129:3059–3066. https://doi.org/10.1242/jcs.188920

    Article  CAS  PubMed  Google Scholar 

  3. Feng Y, Yao Z, Klionsky DJ (2015) How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25:354–363. https://doi.org/10.1016/j.tcb.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ganley IG, du Lam H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305. https://doi.org/10.1074/jbc.M900573200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991. https://doi.org/10.1091/mbc.E08-12-1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hardie DG (2014) AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34:31–55. https://doi.org/10.1146/annurev-nutr-071812-161148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226. https://doi.org/10.1016/j.molcel.2008.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590. https://doi.org/10.1016/s0092-8674(03)00929-2

    Article  CAS  PubMed  Google Scholar 

  9. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461. https://doi.org/10.1126/science.1196371

    Article  CAS  PubMed  Google Scholar 

  10. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137. https://doi.org/10.1146/annurev-pathol-020712-163918

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376. https://doi.org/10.1038/cdd.2014.143

    Article  CAS  PubMed  Google Scholar 

  13. Jia M, Njapo SA, Rastogi V, Hedna VS (2015) Taming glutamate excitotoxicity: strategic pathway modulation for neuroprotection. CNS Drugs 29:153–162. https://doi.org/10.1007/s40263-015-0225-3

    Article  CAS  PubMed  Google Scholar 

  14. Puig B, Brenna S, Magnus T (2018) Molecular communication of a dying neuron in stroke. Int J Mol Sci 19:E2834. https://doi.org/10.3390/ijms19092834

    Article  CAS  PubMed  Google Scholar 

  15. Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY (2018) Autophagy in ischemic stroke. Prog Neurobiol 163–164:98–117. https://doi.org/10.1016/j.pneurobio.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  16. Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (2002) A novel protein complex linking the δ2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 35:921–933. https://doi.org/10.1016/s0896-6273(02)00861-9

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Lu T, Yue X, Wei N, Jiang Y, Chen M, Ni G, Liu X et al (2010) Neuroprotective effect of ginsenoside Rb1 on glutamate-induced neurotoxicity: with emphasis on autophagy. Neurosci Lett 482:264–268. https://doi.org/10.1016/j.neulet.2010.07.052

    Article  CAS  PubMed  Google Scholar 

  18. Kumari S, Mehta SL, Li PA (2012) Glutamate induces mitochondrial dynamic imbalance and autophagy activation: preventive effects of selenium. PLoS One 7:e39382. https://doi.org/10.1371/journal.pone.0039382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yin WY, Ye Q, Huang HJ, Xia NG, Chen YY, Zhang Y, Qu QM (2016) Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy. Mol Cell Biochem 419:53–64. https://doi.org/10.1007/s11010-016-2749-3

    Article  CAS  PubMed  Google Scholar 

  20. Pereira GJ, Antonioli M, Hirata H, Ureshino RP, Nascimento AR, Bincoletto C, Vescovo T, Piacentini M et al (2017) Glutamate induces autophagy via the two-pore channels in neural cells. Oncotarget 8:12730–12740. https://doi.org/10.18632/oncotarget.14404

    Article  PubMed  Google Scholar 

  21. Shehata M, Matsumura H, Okubo-Suzuki R, Ohkawa N, Inokuchi K (2012) Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J Neurosci 32:10413–10422. https://doi.org/10.1523/JNEUROSCI.4533-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim H, Choi J, Ryu J, Park SG, Cho S, Park BC, Lee DH (2009) Activation of autophagy during glutamate-induced HT22 cell death. Biochem Biophys Res Commun 388:339–344. https://doi.org/10.1016/j.bbrc.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y, Luo P, Xu H, Dai S, Rao W, Peng C, Ma W, Wang J et al (2017) RNF146 Inhibits excessive autophagy by modulating the Wnt-β-catenin pathway in glutamate excitotoxicity iInjury. Front Cell Neurosci 11:59. https://doi.org/10.3389/fncel.2017.00059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Au AK, Chen Y, Du L, Smith CM, Manole MD, Baltagi SA, Chu CT, Aneja RK et al (2015) Ischemia-induced autophagy contributes to neurodegeneration in cerebellar Purkinje cells in the developing rat brain and in primary cortical neurons in vitro. Biochim Biophys Acta 1852:1902–1911. https://doi.org/10.1016/j.bbadis.2015.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferrucci M, Biagioni F, Ryskalin L, Limanaqi F, Gambardella S, Frati A, Fornai F (2018) Ambiguous effects of autophagy activation following hypoperfusion/ischemia. Int J Mol Sci 19:E2756. https://doi.org/10.3390/ijms19092756

    Article  CAS  PubMed  Google Scholar 

  26. Clarke JP, Mearow K (2016) Autophagy inhibition in endogenous and nutrient-deprived conditions reduces dorsal root ganglia neuron survival and neurite growth in vitro. J Neurosci Res 94:653–670. https://doi.org/10.1002/jnr.23733

    Article  CAS  PubMed  Google Scholar 

  27. Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, Fu L (2014) mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. Behav Brain Res 264:82–90. https://doi.org/10.1016/j.bbr.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  28. Alirezaei M, Kemball CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB (2010) Short-term fasting induces profound neuronal autophagy. Autophagy 6:702–710. https://doi.org/10.4161/auto.6.6.12376

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhou Z, Vinberg F, Schottler F, Doggett TA, Kefalov VJ, Ferguson TA (2015) Autophagy supports color vision. Autophagy 11:1821–1832. https://doi.org/10.1080/15548627.2015.1084456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Balmer D, Emery M, Andreux P, Auwerx J, Ginet V, Puyal J, Schorderet DF, Roduit R (2013) Autophagy defect is associated with low glucose-induced apoptosis in 661 W photoreceptor cells. PLoS One 8:e74162. https://doi.org/10.1371/journal.pone.0074162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Young JE, Martinez RA, La Spada AR (2009) Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem 284:2363–2373. https://doi.org/10.1074/jbc.M806088200

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ehrnhoefer DE, Martin DDO, Schmidt ME, Qiu X, Ladha S, Caron NS, Skotte NH, Nguyen YTN et al (2018) Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease. Acta Neuropathol Commun 6:16. https://doi.org/10.1186/s40478-018-0518-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez AE, Munoz VC, Cavieres VA, Bustamante HA, Cornejo VH, Januario YC, Gonzalez I, Hetz C et al (2017) Autophagosomes cooperate in the degradation of intracellular C-terminal fragments of the amyloid precursor protein via the MVB/lysosomal pathway. FASEB J 31:2446–2459. https://doi.org/10.1096/fj.201600713R

    Article  CAS  PubMed  Google Scholar 

  34. Hung SY, Huang WP, Liou HC, Fu WM (2009) Autophagy protects neuron from Aβ-induced cytotoxicity. Autophagy 5:502–510. https://doi.org/10.4161/auto.5.4.8096

    Article  CAS  PubMed  Google Scholar 

  35. Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VM (2013) Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 288:15194–15210. https://doi.org/10.1074/jbc.M113.457408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen X, Kondo K, Motoki K, Homma H, Okazawa H (2015) Fasting activates macroautophagy in neurons of Alzheimer’s disease mouse model but is insufficient to degrade amyloid-β. Sci Rep 5:12115. https://doi.org/10.1038/srep12115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaludjerovic GN, Miljkovic D, Momcilovic M, Djinovic VM, Mostarica Stojkovic M, Sabo TJ, Trajkovic V (2005) Novel platinum(IV) complexes induce rapid tumor cell death in vitro. Int J Cancer 116:479–486. https://doi.org/10.1002/ijc.21080

    Article  CAS  PubMed  Google Scholar 

  38. Lucocq JM, Hacker C (2013) Cutting a fine figure: on the use of thin sections in electron microscopy to quantify autophagy. Autophagy 9:1443–1448. https://doi.org/10.4161/auto.25570

    Article  CAS  PubMed  Google Scholar 

  39. Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S et al (2005) Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54:1331–1339. https://doi.org/10.2337/diabetes.54.5.1331

    Article  CAS  PubMed  Google Scholar 

  40. Santin Y, Sicard P, Vigneron F, Guilbeau-Frugier C, Dutaur M, Lairez O, Couderc B, Manni D et al (2016) Oxidative stress by monoamine oxidase-A impairs transcription factor EB activation and autophagosome clearance, leading to cardiomyocyte necrosis and heart failure. Antioxid Redox Signal 25:10–27. https://doi.org/10.1089/ars.2015.6522

    Article  CAS  PubMed  Google Scholar 

  41. Pantovic A, Bosnjak M, Arsikin K, Kosic M, Mandic M, Ristic B, Tosic J, Grujicic D et al (2017) In vitro antiglioma action of indomethacin is mediated via AMP-activated protein kinase/mTOR complex 1 signalling pathway. Int J Biochem Cell Biol 83:84–96. https://doi.org/10.1016/j.biocel.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  42. Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate—induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91. https://doi.org/10.3389/fncel.2015.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Y, Eaton ED, Wills TE, McCann SK, Antonic A, Howells DW (2018) Human ischaemic cascade studies using SH-SY5Y cells: a systematic review and meta-analysis. Transl Stroke Res 9:564–574. https://doi.org/10.1007/s12975-018-0620-4

    Article  PubMed  PubMed Central  Google Scholar 

  44. Johnson JW, Kotermanski SE (2006) Mechanism of action of memantine. Curr Opin Pharmacol 6:61–67. https://doi.org/10.1016/j.coph.2005.09.007

    Article  CAS  PubMed  Google Scholar 

  45. Moruno Manchon JF, Uzor NE, Finkbeiner S, Tsvetkov AS (2016) SPHK1/sphingosine kinase 1-mediated autophagy differs between neurons and SH-SY5Y neuroblastoma cells. Autophagy 12:1418–1424. https://doi.org/10.1080/15548627.2016.1183082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Parganlija D, Klinkenberg M, Dominguez-Bautista J, Hetzel M, Gispert S, Chimi MA, Drose S, Mai S et al (2014) Loss of PINK1 impairs stress-induced autophagy and cell survival. PLoS One 9:e95288. https://doi.org/10.1371/journal.pone.0095288

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269. https://doi.org/10.1016/j.molcel.2009.04.026

    Article  CAS  PubMed  Google Scholar 

  48. Errico F, Mothet JP, Usiello A (2015) D-Aspartate: an endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J Pharm Biomed Anal 116:7–17. https://doi.org/10.1016/j.jpba.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  49. Hermit MB, Greenwood JR, Nielsen B, Bunch L, Jorgensen CG, Vestergaard HT, Stensbol TB, Sanchez C et al (2004) Ibotenic acid and thioibotenic acid: a remarkable difference in activity at group III metabotropic glutamate receptors. Eur J Pharmacol 486:241–250. https://doi.org/10.1016/j.ejphar.2003.12.033

    Article  CAS  PubMed  Google Scholar 

  50. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111. https://doi.org/10.1083/jcb.200504035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998. https://doi.org/10.1074/jbc.275.2.992

    Article  CAS  PubMed  Google Scholar 

  52. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kulikov AV, Rzhaninova AA, Goldshtein DV, Boldyrev AA (2007) Expression of NMDA receptors in multipotent stromal cells of human adipose tissue under conditions of retinoic acid-induced differentiation. Bull Exp Biol Med 144:626–629. https://doi.org/10.1007/s10517-007-0390-6

    Article  CAS  PubMed  Google Scholar 

  54. Naarala J, Nykvist P, Tuomala M, Savolainen K (1993) Excitatory amino acid-induced slow biphasic responses of free intracellular calcium in human neuroblastoma cells. FEBS Lett 330:222–226. https://doi.org/10.1016/0014-5793(93)80278-3

    Article  CAS  PubMed  Google Scholar 

  55. Nair VD, Niznik HB, Mishra RK (1996) Interaction of NMDA and dopamine D2L receptors in human neuroblastoma SH-SY5Y cells. J Neurochem 66:2390–2393. https://doi.org/10.1046/j.1471-4159.1996.66062390.x

    Article  CAS  PubMed  Google Scholar 

  56. Yoon WS, Yeom MY, Kang ES, Chung YA, Chung DS, Jeun SS (2017) Memantine induces NMDAR1-mediated autophagic cell death in malignant glioma cells. J Korean Neurosurg Soc 60:130–137. https://doi.org/10.3340/jkns.2016.0101.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kulbe JR, Mulcahy Levy JM, Coultrap SJ, Thorburn A, Bayer KU (2014) Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res 1542:12–19. https://doi.org/10.1016/j.brainres.2013.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Concannon CG, Tuffy LP, Weisova P, Bonner HP, Davila D, Bonner C, Devocelle MC, Strasser A et al (2010) AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. J Cell Biol 189:83–94. https://doi.org/10.1083/jcb.200909166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao XY, Wang SN, Yang XH, Lan WJ, Chen ZW, Chen JK, Xie JH, Han YF et al (2016) Gartanin protects neurons against glutamate-induced cell death in HT22 cells: independence of Nrf-2 but involvement of HO-1 and AMPK. Neurochem Res 41:2267–2277. https://doi.org/10.1007/s11064-016-1941-x

    Article  CAS  PubMed  Google Scholar 

  60. Weisova P, Concannon CG, Devocelle M, Prehn JH, Ward MW (2009) Regulation of glucose transporter 3 surface expression by the AMP-activated protein kinase mediates tolerance to glutamate excitation in neurons. J Neurosci 29:2997–3008. https://doi.org/10.1523/JNEUROSCI.0354-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shang L, Chen S, Du F, Li S, Zhao L, Wang X (2011) Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci USA 108:4788–4793. https://doi.org/10.1073/pnas.1100844108

    Article  PubMed  PubMed Central  Google Scholar 

  62. Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, Rotiroti D, Morrone LA et al (2011) Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis 2:e144. https://doi.org/10.1038/cddis.2011.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132. https://doi.org/10.1038/ncb1482

    Article  CAS  PubMed  Google Scholar 

  64. Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, Kroemer G (2013) Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol 23:310–322. https://doi.org/10.1016/j.semcancer.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  65. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614. https://doi.org/10.1083/jcb.200507002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee EJ, Tournier C (2011) The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy 7:689–695. https://doi.org/10.4161/auto.7.7.15450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mei Y, Su M, Sanishvili R, Chakravarthy S, Colbert CL, Sinha SC (2016) Identification of BECN1 and ATG14 coiled-coil interface residues that are important for starvation-induced autophagy. Biochemistry 55:4239–4253. https://doi.org/10.1021/acs.biochem.6b00246

    Article  CAS  PubMed  Google Scholar 

  68. Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko HJ, Kweon MN, Won KJ et al (2016) AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534:553–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen Y, Guo Z, Peng X, Xie W, Chen L, Tan Z (2018) Nimodipine represses AMPK phosphorylation and excessive autophagy after chronic cerebral hypoperfusion in rats. Brain Res Bull 140:88–96. https://doi.org/10.1016/j.brainresbull.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  70. Young NP, Kamireddy A, Van Nostrand JL, Eichner LJ, Shokhirev MN, Dayn Y, Shaw RJ (2016) AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev 30:535–552. https://doi.org/10.1101/gad.274142.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang J, Wang X, Zhu Y, Li Z, Zhu YT, Wu JC, Qin ZH, Xiang M et al (2019) Exercise activates lysosomal function in the brain through AMPK-SIRT1-TFEB pathway. CNS Neurosci Ther 25:796–807. https://doi.org/10.1111/cns.13114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973. https://doi.org/10.1016/0896-6273(95)90186-8

    Article  CAS  PubMed  Google Scholar 

  73. Lei Y, Liu K, Hou L, Ding L, Li Y, Liu L (2017) Small chaperons and autophagy protected neurons from necrotic cell death. Sci Rep 7:5650. https://doi.org/10.1038/s41598-017-05995-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tian J, Cheng J, Zhang J, Ye L, Zhang F, Dong Q, Wang H, Fu F (2014) Protection of pyruvate against glutamate excitotoxicity is mediated by regulating DAPK1 protein complex. PLoS One 9:e95777. https://doi.org/10.1371/journal.pone.0095777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L et al (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 171:3146–3157. https://doi.org/10.1111/bph.12655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ginet V, Spiehlmann A, Rummel C, Rudinskiy N, Grishchuk Y, Luthi-Carter R, Clarke PG, Truttmann AC et al (2014) Involvement of autophagy in hypoxic-excitotoxic neuronal death. Autophagy 10:846–860. https://doi.org/10.4161/auto.28264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pathak D, Berthet A, Nakamura K (2013) Energy failure: does it contribute to neurodegeneration? Ann Neurol 74:506–516. https://doi.org/10.1002/ana.24014

    Article  PubMed  PubMed Central  Google Scholar 

  78. Salinska E, Danysz W, Lazarewicz JW (2005) The role of excitotoxicity in neurodegeneration. Folia Neuropathol 43:322–339

    CAS  PubMed  Google Scholar 

  79. Ntsapi C, Loos B (2016) Caloric restriction and the precision-control of autophagy: a strategy for delaying neurodegenerative disease progression. Exp Gerontol 83:97–111. https://doi.org/10.1016/j.exger.2016.07.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by COST (European Cooperation in Science and Technology) Action (TRANSAUTOPHAGY CA15138), the “Start Up for Science” grant by Phillip Morris and Center for Leadership Development, and the Ministry of Science and Technological Development of the Republic of Serbia under grants 173053, 41025, and 173022. The authors would like to thank Dr. Benoit Viollet (Inserm U1016, Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris cité, Paris, France) for helpful discussion and his gift of the plasmid encoding a constitutively active AMPK, and Nikola Micic (Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia) for performing the HPLC analysis.

Author information

Authors and Affiliations

Authors

Contributions

LV: conceptualization, resources, investigation, formal analysis, preparation and visualization, writing-original draft; MM: conceptualization, investigation, formal analysis, preparation and visualization, writing-original draft; DC, TM, MJ, AI: investigation, formal analysis; IM, JS: resources, investigation; MF: resources, writing-review and editing; YRR: investigation, formal analysis; VIK: resources, writing-review and editing, supervision; VT: conceptualization, resources, validation, preparation and visualization, writing-review and editing, supervision.

Corresponding author

Correspondence to Vladimir Trajkovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vucicevic, L., Misirkic, M., Ciric, D. et al. Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells. Cell. Mol. Life Sci. 77, 3383–3399 (2020). https://doi.org/10.1007/s00018-019-03356-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03356-2

Keywords

Navigation