Skip to main content

Advertisement

Log in

What is strain in neurodegenerative diseases?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, are characterized by the aggregation of misfolded proteins, including Aβ, tau and α-synuclein. It is well recognized that these misfolded proteins are able to self-propagate and spread throughout the nervous system and cause neuronal injury in a way that resembles prion disease. These disease-specific misfolded proteins demonstrate unique features, including the seeding barrier, the conformational memory effect, strain selection and strain evolution, based on the presence of various strains. However, the accurate definition of the term strain remains to be clarified. Here, a clear interpretation is proposed by a retrospective of its history in prion research and the recent progress in neurodegeneration research. Furthermore, the causes contributing to the genesis of various strains are also summarized. Deeper insight into strains helps us to understand the phenomena we observe in this field and it also enlightens us on the elusive mechanisms and management of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goedert M (2015) Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349:1255555

    Article  PubMed  CAS  Google Scholar 

  2. Goedert M et al (2014) Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr Neurol Neurosci Rep 14:495

    Article  PubMed  CAS  Google Scholar 

  3. Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11:155–159

    Article  CAS  PubMed  Google Scholar 

  4. Stopschinski BE, Diamond MI (2017) The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol 16:323–332

    Article  CAS  PubMed  Google Scholar 

  5. Clavaguera F et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peelaerts W et al (2015) α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344

    Article  CAS  PubMed  Google Scholar 

  7. Kaufman SK et al (2016) Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92:796–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luk KC et al (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Foster JD et al (2001) Clinical signs, histopathology and genetics of experimental transmission of BSE and natural scrapie to sheep and goats. Vet. Rec 148:165–171

    Article  CAS  PubMed  Google Scholar 

  10. Jeffrey M et al (1995) Pathology of the transmissible spongiform encephalopathies with special emphasis on ultrastructure. Micron 26:277–298

    Article  CAS  PubMed  Google Scholar 

  11. Pattison IH (1972) Scrapie—a personal view. J Clin Pathol Suppl (R Coll Pathol) 6:110–114

    Article  CAS  Google Scholar 

  12. Pattison IH et al (1959) Experimental production of scrapie in goats. J Comp Pathol 69:300–312

    Article  CAS  PubMed  Google Scholar 

  13. Wemheuer WM et al (2017) Types and strains: their essential role in understanding protein aggregation in neurodegenerative diseases. Front, Aging Neurosci, p 9

    Google Scholar 

  14. Aguzzi A et al (2007) Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8:552–561

    Article  CAS  PubMed  Google Scholar 

  15. Chandler RL (1962) Encephalopathy in mice. Lancet 279:107–108

    Article  Google Scholar 

  16. Chandler RL, Fisher J (1963) Experimental transmission of scrapie to rats. Lancet Lond Engl 2:1165

    Article  Google Scholar 

  17. Chandler RL (1961) Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet Lond Engl 1:1378–1379

    Article  CAS  Google Scholar 

  18. Dickinson AG, Meikle VM (1971) Host-genotype and agent effects in scrapie incubation: change in allelic interaction with different strains of agent. Mol Gen Genet MGG 112:73–79

    Article  CAS  PubMed  Google Scholar 

  19. Dickinson AG et al (1972) Competition between different scrapie agents in mice. Nat N Biol 237:244–245

    Article  CAS  Google Scholar 

  20. Fraser H, Dickinson AG (1968) The sequential development of the brain lesion of scrapie in three strains of mice. J Comp Pathol 78:301–311

    Article  CAS  PubMed  Google Scholar 

  21. Bruce ME et al (1991) The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J Gen Virol 72(Pt 3):595–603

    Article  CAS  PubMed  Google Scholar 

  22. Carp RI, Callahan SM (1991) Variation in the characteristics of 10 mouse-passaged scrapie lines derived from five scrapie-positive sheep. J Gen Virol 72(Pt 2):293–298

    Article  PubMed  Google Scholar 

  23. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  24. Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  CAS  PubMed  Google Scholar 

  25. Gajdusek DC, Gibbs CJ (1968) Slow, latent and temperate virus infections of the central nervous system. Res Publ Assoc Res Nerv Ment Dis 44:254–280

    CAS  PubMed  Google Scholar 

  26. Gajdusek DC (1967) Slow-virus infections of the nervous system. N Engl J Med 276:392–400

    Article  CAS  PubMed  Google Scholar 

  27. Eklund CM et al (1967) Pathogenesis of scrapie virus infection in the mouse. J Infect Dis 117:15–22

    Article  CAS  PubMed  Google Scholar 

  28. Sigurdsson B (1954) A chronic encephalitis of sheep: with general remarks on infections which develop slowly and some of their special characteristics. Br Vet J 110:341–354

    Article  Google Scholar 

  29. Manuelidis L et al (2007) Cells infected with scrapie and Creutzfeldt-Jakob disease agents produce intracellular 25-nm virus-like particles. Proc Natl Acad Sci USA 104:1965–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alper T (1985) Scrapie agent unlike viruses in size and susceptibility to inactivation by ionizing or ultraviolet radiation. Nature 317:750

    Article  CAS  PubMed  Google Scholar 

  31. Field EJ et al (1969) Susceptibility of scrapie agent to ionizing radiation. Nature 222:90–91

    Article  CAS  PubMed  Google Scholar 

  32. Hao W (2011) Evidence of intra-segmental homologous recombination in influenza A virus. Gene 481:57–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De A et al (2016) Bioinformatics studies of Influenza A hemagglutinin sequence data indicate recombination-like events leading to segment exchanges. BMC Res Notes 9:222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gibson W et al (2015) Genetic recombination between human and animal parasites creates novel strains of human pathogen. PLoS Negl Trop Dis 9:e0003665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Igel-Egalon A et al (2018) Prion strains and transmission barrier phenomena. Pathog Basel Switz 7:E5

  36. Nizynski B et al (2018) Amyloidogenic cross-seeding of Tau protein: transient emergence of structural variants of fibrils. PLoS One 13:e0201182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Scialò C et al (2019) Prion and prion-like protein strains: deciphering the molecular basis of heterogeneity in neurodegeneration. Viruses 11:261

    Article  PubMed Central  CAS  Google Scholar 

  38. Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318:930–936

    Article  CAS  PubMed  Google Scholar 

  39. He Z et al (2017) Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24:29–38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yu X et al (2012) Cross-seeding and conformational selection between three- and four-repeat human Tau proteins. J Biol Chem 287:14950–14959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Condello C, Stöehr J (2018) Aβ propagation and strains: implications for the phenotypic diversity in Alzheimer’s disease. Neurobiol Dis 109:191–200

    Article  PubMed  Google Scholar 

  42. Mann DMA (1988) Alzheimer’s disease and Down’s syndrome. Histopathology 13:125–137

    Article  CAS  PubMed  Google Scholar 

  43. Scheltens P et al (2016) Alzheimer’s disease. Lancet Lond Engl 388:505–517

    Article  CAS  Google Scholar 

  44. Cole SL, Vassar R (2007) The Alzheimer’s disease β-secretase enzyme, BACE1. Mol Neurodegener 2:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yang G et al (2019) Structural basis of Notch recognition by human γ-secretase. Nature 565:192–197

    Article  CAS  PubMed  Google Scholar 

  46. Zhang S et al (2017) Insights into formation and structure of Aβ oligomers cross-linked via tyrosines. J Phys Chem. B 121:5523–5535

    Article  CAS  PubMed  Google Scholar 

  47. Zhang S et al (2019) Elucidating the role of hydroxylated phenylalanine in the formation and structure of cross-linked Aβ oligomers. J Phys Chem B 123:1068–1084

    Article  CAS  PubMed  Google Scholar 

  48. Wang Z-X et al (2016) The essential role of soluble Aβ oligomers in Alzheimer’s disease. Mol Neurobiol 53:1905–1924

    Article  CAS  PubMed  Google Scholar 

  49. Ji L et al (2016) Intracellular Aβ and its pathological role in Alzheimer’s disease: lessons from cellular to animal models. Curr Alzheimer Res 13:621–630

    Article  CAS  PubMed  Google Scholar 

  50. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fritschi SK et al (2014) Aβ seeds resist inactivation by formaldehyde. Acta Neuropathol. (Berl.) 128:477–484

    Article  CAS  Google Scholar 

  52. Heilbronner G et al (2013) Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep 14:1017–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Petkova AT et al (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s b-amyloid fibrils. Science 307:5

    Article  CAS  Google Scholar 

  54. Selivanova OM et al (2018) To be fibrils or to be nanofilms? Oligomers are building blocks for fibril and nanofilm formation of fragments of Aβ peptide. Langmuir ACS J Surf Coll 34:2332–2343

    Article  CAS  Google Scholar 

  55. Watts JC et al (2014) Serial propagation of distinct strains of A prions from Alzheimer’s disease patients. Proc Natl Acad Sci 111:10323–10328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosen RF et al (2010) Deficient high-affinity binding of Pittsburgh compound B in a case of Alzheimer’s disease. Acta Neuropathol (Berl.) 119:221–233

    Article  CAS  Google Scholar 

  57. Gurol ME et al (2016) Florbetapir-PET to diagnose cerebral amyloid angiopathy: a prospective study. Neurology 87:2043–2049

    Article  PubMed  PubMed Central  Google Scholar 

  58. Landau SM et al (2016) Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 86:1377–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson KA et al (2007) Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 62:229–234

    Article  PubMed  Google Scholar 

  60. Johnson KA et al (2013) Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement 9:S72–S83

    PubMed  PubMed Central  Google Scholar 

  61. De-Paula VJ et al (2012) Alzheimer’s disease. Subcell Biochem 65:329–352

    Article  CAS  PubMed  Google Scholar 

  62. Medina M et al (2016) New features about Tau function and dysfunction. Biomolecules 6:21

    Article  PubMed Central  CAS  Google Scholar 

  63. Borna H et al (2018) Structure, function and interactions of Tau: particular focus on potential drug targets for the treatment of tauopathies. CNS Neurol Disord Drug Targets 17:325–337

    Article  CAS  PubMed  Google Scholar 

  64. Duka V et al (2013) Identification of the sites of tau hyperphosphorylation and activation of tau kinases in synucleinopathies and Alzheimer’s diseases. PLoS One 8:e75025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoshida H, Goedert M (2012) Phosphorylation of microtubule-associated protein tau by AMPK-related kinases. J Neurochem 120:165–176

    Article  CAS  PubMed  Google Scholar 

  66. Martin L et al (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12:289–309

    Article  CAS  PubMed  Google Scholar 

  67. Yu Y et al (2009) Developmental regulation of tau phosphorylation, tau kinases, and tau phosphatases. J Neurochem 108:1480–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cavallini A et al (2013) An unbiased approach to identifying tau kinases that phosphorylate tau at sites associated with Alzheimer disease. J Biol Chem 288:23331–23347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Furukawa Y et al (2011) Tau protein assembles into isoform- and disulfide-dependent polymorphic fibrils with distinct structural properties. J Biol Chem 286:27236–27246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aoyagi H et al (2007) Fibrillogenic nuclei composed of P301L mutant tau induce elongation of P301L tau but not wild-type tau. J Biol Chem 282:20309–20318

    Article  CAS  PubMed  Google Scholar 

  71. Spillantini MG et al (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci 95:6469–6473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Spillantini MG et al (1997) α-Synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  73. Tu PH et al (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble α-synuclein. Ann Neurol 44:415–422

    Article  CAS  PubMed  Google Scholar 

  74. Villar-Piqué A et al (2016) Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J Neurochem 139(Suppl 1):240–255

    Article  PubMed  CAS  Google Scholar 

  75. Klingelhoefer L, Reichmann H (2017) The gut and nonmotor symptoms in Parkinson’s disease. Int Rev Neurobiol 134:787–809

    Article  PubMed  Google Scholar 

  76. Caputi V, Giron MC (2018) Microbiome-Gut-brain axis and toll-like receptors in Parkinson’s disease. Int J Mol, Sci, p 19

    Google Scholar 

  77. Li Y et al (2018) Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res 28:897–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tanaka G et al (2019) Biochemical and morphological classification of disease-associated alpha-synuclein mutants aggregates. Biochem Biophys Res Commun 508:729–734

    Article  CAS  PubMed  Google Scholar 

  79. Tanaka G et al (2019) Sequence- and seed-structure-dependent polymorphic fibrils of alpha-synuclein. Biochim Biophys Acta BBA Mol Basis Dis 1865:1410–1420

    Article  CAS  Google Scholar 

  80. Atsmon-Raz Y, Miller Y (2016) Non-amyloid-β component of human α-synuclein oligomers induces formation of new Aβ oligomers: insight into the mechanisms that link Parkinson’s and Alzheimer’s diseases. ACS Chem Neurosci 7:46–55

    Article  CAS  PubMed  Google Scholar 

  81. Castillo-Carranza DL et al (2018) α-Synuclein oligomers induce a unique toxic tau strain. Biol Psychiatry 84:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oikawa T et al (2016) α-Synuclein fibrils exhibit gain of toxic function, promoting tau aggregation and inhibiting microtubule assembly. J Biol Chem 291:15046–15056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peng C et al (2018) Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557:558–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamasaki TR et al (2019) Parkinson’s disease and multiple system atrophy have distinct α-synuclein seed characteristics. J Biol Chem 294:1045–1058

    Article  CAS  PubMed  Google Scholar 

  85. Fang B et al (2010) Hypothesis on the relationship between the change in intracellular pH and incidence of sporadic Alzheimer’s disease or vascular dementia. Int J Neurosci 120:591–595

    Article  CAS  PubMed  Google Scholar 

  86. Yates CM et al (1990) Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem 55:1624–1630

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Z et al (2016) Asparagine endopeptidase is an innovative therapeutic target for neurodegenerative diseases. Expert Opin Ther Targets 20:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee M-H et al (2018) Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563:639–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rohrback S et al (2018) Genomic mosaicism in the developing and adult brain. Dev Neurobiol 78:1026–1048

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cacciottolo M et al (2017) Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry 7:e1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim SH et al (2012) Rapid doubling of Alzheimer’s amyloid-β40 and 42 levels in brains of mice exposed to a nickel nanoparticle model of air pollution. F1000Research 1:70

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sampson TR et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li H et al (2018) Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 7:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dominy SS et al (2019) Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5:eaau3333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wu Y et al (2019) Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat Commun 10:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kagan BL et al (2012) Antimicrobial properties of amyloid peptides. Mol Pharm 9:708–717

    Article  CAS  PubMed  Google Scholar 

  97. Kumar DKV et al (2016) Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 8:340ra7

    Article  CAS  Google Scholar 

  98. Soscia SJ et al (2010) The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One 5:e9505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bourgade K et al (2015) β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology 16:85–98

    Article  CAS  PubMed  Google Scholar 

  100. Eimer WA et al (2018) Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 99:56–63.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tzeng N-S et al (2018) Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections—a nationwide, population-based cohort study in Taiwan. Neurotherapeutics 15:417–429

    Article  PubMed  PubMed Central  Google Scholar 

  102. Severance EG et al (2016) Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. Npj Schizophr 2:16018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qiang L et al (2018) Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr Biol 28:2181–2189.e4

    Article  CAS  PubMed  Google Scholar 

  104. Kotagal V et al (2018) Serotonin, β-amyloid, and cognition in Parkinson disease: serotonin Medications in PD. Ann Neurol 83:994–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hepp DH et al (2016) Distribution and load of amyloid-β pathology in Parkinson disease and dementia with Lewy bodies. J Neuropathol Exp Neurol 75:936–945

    Article  CAS  PubMed  Google Scholar 

  106. Nemani SK et al (2018) Co-occurrence of chronic traumatic encephalopathy and prion disease. Acta Neuropathol Commun 6:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Edwards G et al (2017) Amyloid-beta and tau pathology following repetitive mild traumatic brain injury. Biochem Biophys Res Commun 483:1137–1142

    Article  CAS  PubMed  Google Scholar 

  108. Rubenstein R et al (2017) Tau phosphorylation induced by severe closed head traumatic brain injury is linked to the cellular prion protein. Acta Neuropathol Commun 5:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Stein TD et al (2015) Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol (Berl) 130:21–34

    Article  CAS  Google Scholar 

  110. Mufson EJ et al (2016) Progression of tau pathology within cholinergic nucleus basalis neurons in chronic traumatic encephalopathy: a chronic effects of neurotrauma consortium study. Brain Inj 30:1399–1413

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 81822016, 81771382, and 81571249) to Z. Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhentao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Meng, L. & Zhang, Z. What is strain in neurodegenerative diseases?. Cell. Mol. Life Sci. 77, 665–676 (2020). https://doi.org/10.1007/s00018-019-03298-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03298-9

Keywords

Navigation