Skip to main content
Log in

The evolution of the 9aaTAD domain in Sp2 proteins: inactivation with valines and intron reservoirs

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The universal nine-amino-acid transactivation domains (9aaTADs) have been identified in numerous transcription activators. Here, we identified the conserved 9aaTAD motif in all nine members of the specificity protein (SP) family. Previously, the Sp1 transcription factor has been defined as a glutamine-rich activator. We showed by amino acid substitutions that the glutamine residues are completely dispensable for 9aaTAD function and are not conserved in the SP family. We described the origin and evolutionary history of 9aaTADs. The 9aaTADs of the ancestral Sp2 gene became inactivated in early chordates. We next discovered that an accumulation of valines in 9aaTADs inactivated their transactivation function and enabled their strict conservation during evolution. Subsequently, in chordates, Sp2 has duplicated and created new paralogs, Sp1, Sp3, and Sp4 (the SP1–4 clade). During chordate evolution, the dormancy of the Sp2 activation domain lasted over 100 million years. The dormant but still intact ancestral Sp2 activation domains allowed diversification of the SP1–4 clade into activators and repressors. By valine substitution in the 9aaTADs, Sp1 and Sp3 regained their original activator function found in ancestral lower metazoan sea sponges. Therefore, the vertebrate SP1–4 clade could include both repressors and activators. Furthermore, we identified secondary 9aaTADs in Sp2 introns present from fish to primates, including humans. In the gibbon genome, introns containing 9aaTADs were used as exons, which turned the Sp2 gene into an activator. Similarly, we identified introns containing 9aaTADs used conditionally as exons in the (SP family-unrelated) transcription factor SREBP1, suggesting that the intron-9aaTAD reservoir is a general phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Teufel DP, Freund SM, Bycroft M, Fersht AR (2007) Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA 104:7009–7014. https://doi.org/10.1073/pnas.0702010104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gamper AM, Roeder RG (2008) Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage. Mol Cell Biol 28:2517–2527. https://doi.org/10.1128/MCB.01461-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feng H, Jenkins LMM, Durell SR et al (2009) Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17:202–210. https://doi.org/10.1016/j.str.2008.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferreon JC, Lee CW, Arai M et al (2009) Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proc Natl Acad Sci USA 106:6591–6596. https://doi.org/10.1073/pnas.0811023106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jenkins LMM, Yamaguchi H, Hayashi R et al (2009) Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation. Biochemistry 48:1244–1255. https://doi.org/10.1021/bi801716h

    Article  CAS  PubMed  Google Scholar 

  6. Thakur JK, Arthanari H, Yang F et al (2009) Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p. J Biol Chem 284:4422–4428. https://doi.org/10.1074/jbc.M808263200

    Article  CAS  PubMed  Google Scholar 

  7. Choi Y, Asada S, Uesugi M (2000) Divergent hTAFII31-binding motifs hidden in activation domains. J Biol Chem 275:15912–15916

    Article  CAS  PubMed  Google Scholar 

  8. Uesugi M, Verdine GL (1999) The alpha-helical FXXPhiPhi motif in p53: tAF interaction and discrimination by MDM2. Proc Natl Acad Sci USA 96:14801–14806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Piskacek M (2009) 9aaTADs mimic DNA to interact with a pseudo-DNA binding domain KIX of Med15 (molecular chameleons). Nat Proc. https://doi.org/10.1038/npre.2009.3939.1

    Article  Google Scholar 

  10. Piskacek M (2009) Common transactivation Motif 9aaTAD recruits multiple general co-activators TAF9, MED15, CBP and p300. Nat Proc. https://doi.org/10.1038/npre.2009.3488.2

    Article  Google Scholar 

  11. Di Lello P, Jenkins LMM, Jones TN et al (2006) Structure of the Tfb1/p53 complex: insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell 22:731–740. https://doi.org/10.1016/j.molcel.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  12. Piskacek S, Gregor M, Nemethova M et al (2007) Nine-amino-acid transactivation domain: establishment and prediction utilities. Genomics 89:756–768. https://doi.org/10.1016/j.ygeno.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  13. Piskacek M, Vasku A, Hajek R, Knight A (2015) Shared structural features of the 9aaTAD family in complex with CBP. Mol BioSyst 11:844–851. https://doi.org/10.1039/c4mb00672k

    Article  CAS  PubMed  Google Scholar 

  14. Piskacek M, Havelka M, Rezacova M, Knight A (2016) The 9aaTAD transactivation domains: from Gal4 to p53. PLoS One 11:e0162842. https://doi.org/10.1371/journal.pone.0162842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Piskacek M (2009) 9aaTAD prediction result (2006). Nat Proc 1:1. https://doi.org/10.1038/npre.2009.3984.1

    Article  Google Scholar 

  16. Sandholzer J, Hoeth M, Piskacek M et al (2007) A novel 9-amino-acid transactivation domain in the C-terminal part of Sox18. Biochem Biophys Res Commun 360:370–374. https://doi.org/10.1016/j.bbrc.2007.06.095

    Article  CAS  PubMed  Google Scholar 

  17. Piskacek M, Havelka M, Rezacova M, Knight A (2017) The 9aaTAD is exclusive activation domain in Gal4. PLoS One 12:e0169261. https://doi.org/10.1371/journal.pone.0169261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kakidani H, Ptashne M (1988) GAL4 activates gene expression in mammalian cells. Cell 52:161–167

    Article  CAS  PubMed  Google Scholar 

  19. Fields S, Jang SK (1990) Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049

    Article  CAS  PubMed  Google Scholar 

  20. Piskacek M, Havelka M, Jendruchova K, Knight A (2018) Nuclear hormone receptors: ancient 9aaTAD and evolutionally gained NCoA activation pathways. J Steroid Biochem Mol Biol. https://doi.org/10.1016/j.jsbmb.2018.11.008

    Article  PubMed  Google Scholar 

  21. Triezenberg SJ (1995) Structure and function of transcriptional activation domains. Curr Opin Genet Dev 5:190–196

    Article  CAS  PubMed  Google Scholar 

  22. Ma J, Ptashne M (1987) A new class of yeast transcriptional activators. Cell 51:113–119

    Article  CAS  PubMed  Google Scholar 

  23. Courey AJ, Tjian R (1988) Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898

    Article  CAS  PubMed  Google Scholar 

  24. Courey AJ, Holtzman DA, Jackson SP, Tjian R (1989) Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59:827–836

    Article  CAS  PubMed  Google Scholar 

  25. Tanese N, Pugh BF, Tjian R (1991) Coactivators for a proline-rich activator purified from the multisubunit human TFIID complex. Genes Dev 5:2212–2224

    Article  CAS  PubMed  Google Scholar 

  26. Mermod N, O’Neill EA, Kelly TJ, Tjian R (1989) The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58:741–753

    Article  CAS  PubMed  Google Scholar 

  27. Stargell LA, Struhl K (1995) The TBP-TFIIA interaction in the response to acidic activators in vivo. Science 269:75–78

    Article  CAS  PubMed  Google Scholar 

  28. Chou S, Struhl K (1997) Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains. Mol Cell Biol 17:6794–6802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dorris DR, Struhl K (2000) Artificial recruitment of TFIID, but not RNA polymerase II holoenzyme, activates transcription in mammalian cells. Mol Cell Biol 20:4350–4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thoden JB, Ryan LA, Reece RJ, Holden HM (2008) The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of Gal4p recognition by Gal80p. J Biol Chem 283:30266–30272. https://doi.org/10.1074/jbc.M805200200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drysdale CM, Dueñas E, Jackson BM et al (1995) The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol Cell Biol 15:1220–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jackson BM, Drysdale CM, Natarajan K, Hinnebusch AG (1996) Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Mol Cell Biol 16:5557–5571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Natarajan K, Meyer MR, Jackson BM et al (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368. https://doi.org/10.1128/MCB.21.13.4347-4368.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jedidi I, Zhang F, Qiu H et al (2010) Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo. J Biol Chem 285:2438–2455. https://doi.org/10.1074/jbc.M109.071589

    Article  CAS  PubMed  Google Scholar 

  35. Krois AS, Ferreon JC, Martinez-Yamout MA et al (2016) Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proc Natl Acad Sci USA 113:E1853–1862. https://doi.org/10.1073/pnas.1602487113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee CW, Arai M, Martinez-Yamout MA et al (2009) Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP. Biochemistry 48:2115–2124. https://doi.org/10.1021/bi802055v

    Article  CAS  PubMed  Google Scholar 

  37. Denis CM, Chitayat S, Plevin MJ et al (2012) Structural basis of CBP/p300 recruitment in leukemia induction by E2A-PBX1. Blood. https://doi.org/10.1182/blood-2012-02-411397

    Article  PubMed  Google Scholar 

  38. Wang F, Marshall CB, Li G-Y et al (2009) Synergistic interplay between promoter recognition and CBP/p300 coactivator recruitment by FOXO3a. ACS Chem Biol 4:1017–1027. https://doi.org/10.1021/cb900190u

    Article  CAS  PubMed  Google Scholar 

  39. Radhakrishnan I, Pérez-Alvarado GC, Parker D et al (1997) Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91:741–752

    Article  CAS  PubMed  Google Scholar 

  40. Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE (2010) Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 49:9964–9971. https://doi.org/10.1021/bi1012996

    Article  CAS  PubMed  Google Scholar 

  41. Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO J 28:948–958. https://doi.org/10.1038/emboj.2009.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gill G, Pascal E, Tseng ZH, Tjian R (1994) A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci USA 91:192–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Titz B, Thomas S, Rajagopala SV et al (2006) Transcriptional activators in yeast. Nucleic Acids Res 34:955–967. https://doi.org/10.1093/nar/gkj493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Escher D, Bodmer-Glavas M, Barberis A, Schaffner W (2000) Conservation of glutamine-rich transactivation function between yeast and humans. Mol Cell Biol 20:2774–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hahn S (1993) Structure(?) and function of acidic transcription activators. Cell 72:481–483. https://doi.org/10.1016/0092-8674(93)90064-W

    Article  CAS  PubMed  Google Scholar 

  46. Brzovic PS, Heikaus CC, Kisselev L et al (2011) The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol Cell 44:942–953. https://doi.org/10.1016/j.molcel.2011.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu Z, Ansari AZ, Lu X et al (2002) A target essential for the activity of a nonacidic yeast transcriptional activator. Proc Natl Acad Sci USA 99:8591–8596. https://doi.org/10.1073/pnas.092263499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma J, Ptashne M (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853

    Article  CAS  PubMed  Google Scholar 

  49. Ferreira ME, Hermann S, Prochasson P et al (2005) Mechanism of transcription factor recruitment by acidic activators. J Biol Chem 280:21779–21784. https://doi.org/10.1074/jbc.M502627200

    Article  CAS  PubMed  Google Scholar 

  50. Staller MV, Holehouse AS, Swain-Lenz D et al (2018) A high-throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain. Cell Syst. https://doi.org/10.1016/j.cels.2018.01.015

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang H-M, Liu T, Liu C-J et al (2015) AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids Res 43:D76–81. https://doi.org/10.1093/nar/gku887

    Article  CAS  PubMed  Google Scholar 

  52. Kolell KJ, Crawford DL (2002) Evolution of Sp transcription factors. Mol Biol Evol 19:216–222

    Article  CAS  PubMed  Google Scholar 

  53. Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Krüppel-like transcription factors. Genome Biol 4:206

    Article  PubMed  PubMed Central  Google Scholar 

  54. Suske G, Bruford E, Philipsen S (2005) Mammalian SP/KLF transcription factors: bring in the family. Genomics 85:551–556. https://doi.org/10.1016/j.ygeno.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  55. Vizcaíno C, Mansilla S, Portugal J (2015) Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther 152:111–124. https://doi.org/10.1016/j.pharmthera.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  56. Mir R, Sharma A, Pradhan SJ, Galande S (2018) Regulation of transcription factor SP1 by β-catenin destruction complex modulates Wnt response. bioRxiv 308841. https://doi.org/10.1101/308841

    Article  Google Scholar 

  57. Rane MJ, Zhao Y, Cai L (2019) Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine. https://doi.org/10.1016/j.ebiom.2019.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  58. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  59. Baumgartner U, Hamilton B, Piskacek M et al (1999) Functional analysis of the Zn(2)Cys(6) transcription factors Oaf1p and Pip2p. Different roles in fatty acid induction of beta-oxidation in Saccharomyces cerevisiae. J Biol Chem 274:22208–22216

    Article  CAS  PubMed  Google Scholar 

  60. Leuther KK, Salmeron JM, Johnston SA (1993) Genetic evidence that an activation domain of GAL4 does not require acidity and may form a beta sheet. Cell 72:575–585

    Article  CAS  PubMed  Google Scholar 

  61. Baur F, Nau K, Sadic D et al (2010) Specificity protein 2 (Sp2) is essential for mouse development and autonomous proliferation of mouse embryonic fibroblasts. PLoS One 5:e9587. https://doi.org/10.1371/journal.pone.0009587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Terrados G, Finkernagel F, Stielow B et al (2012) Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes. Nucleic Acids Res 40:7844–7857. https://doi.org/10.1093/nar/gks544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Völkel S, Stielow B, Finkernagel F et al (2015) Zinc finger independent genome-wide binding of Sp2 potentiates recruitment of histone-fold protein Nf-y distinguishing it from Sp1 and Sp3. PLoS Genet 11:e1005102. https://doi.org/10.1371/journal.pgen.1005102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ratajewski M, Walczak-Drzewiecka A, Gorzkiewicz M et al (2016) Expression of human gene coding RORγT receptor depends on the Sp2 transcription factor. J Leukoc Biol 100:1213–1223. https://doi.org/10.1189/jlb.6A0515-212RR

    Article  CAS  PubMed  Google Scholar 

  65. Zschemisch N-H, Brüsch I, Hambusch A-S, Bleich A (2016) Transcription factor SP2 enhanced the expression of Cd14 in colitis-susceptible C3H/HeJBir. PLoS One 11:e0155821. https://doi.org/10.1371/journal.pone.0155821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moorefield KS, Fry SJ, Horowitz JM (2004) Sp2 DNA binding activity and trans-activation are negatively regulated in mammalian cells. J Biol Chem 279:13911–13924. https://doi.org/10.1074/jbc.M313589200

    Article  CAS  PubMed  Google Scholar 

  67. Yin H, Nichols TD, Horowitz JM (2010) Transcription of mouse Sp2 yields alternatively spliced and sub-genomic mRNAs in a tissue- and cell-type-specific fashion. Biochim Biophys Acta 1799:520–531. https://doi.org/10.1016/j.bbagrm.2010.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Phan D, Cheng C-J, Galfione M et al (2004) Identification of Sp2 as a transcriptional repressor of carcinoembryonic antigen-related cell adhesion molecule 1 in tumorigenesis. Cancer Res 64:3072–3078

    Article  CAS  PubMed  Google Scholar 

  69. Yesudhas D, Anwar MA, Panneerselvam S et al (2017) Evaluation of Sox2 binding affinities for distinct DNA patterns using steered molecular dynamics simulation. FEBS Open Bio 7:1750–1767. https://doi.org/10.1002/2211-5463.12316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kamachi Y, Kondoh H (2013) Sox proteins: regulators of cell fate specification and differentiation. Development 140:4129–4144. https://doi.org/10.1242/dev.091793

    Article  CAS  PubMed  Google Scholar 

  71. Lodato MA, Ng CW, Wamstad JA et al (2013) SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state. PLoS Genet 9:e1003288. https://doi.org/10.1371/journal.pgen.1003288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ward SV, Samuel CE (2003) The pkr kinase promoter binds both Sp1 and Sp3, but only Sp3 functions as part of the interferon-inducible complex with ISGF-3 proteins. Virology 313:553–566. https://doi.org/10.1016/S0042-6822(03)00347-7

    Article  CAS  PubMed  Google Scholar 

  73. Jaiswal AS, Balusu R, Narayan S (2006) 7,12-Dimethylbenzanthracene-dependent transcriptional regulation of adenomatous polyposis coli (APC) gene expression in normal breast epithelial cells is mediated by GC-box binding protein Sp3. Carcinogenesis 27:252–261. https://doi.org/10.1093/carcin/bgi225

    Article  CAS  PubMed  Google Scholar 

  74. Li L, Davie JR (2010) The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat Anatomischer Anz 192:275–283. https://doi.org/10.1016/j.aanat.2010.07.010

    Article  CAS  Google Scholar 

  75. Erwin DH, Laflamme M, Tweedt SM et al (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097. https://doi.org/10.1126/science.1206375

    Article  CAS  PubMed  Google Scholar 

  76. Presnell JS, Schnitzler CE, Browne WE (2015) KLF/SP transcription factor family evolution: expansion, diversification, and innovation in eukaryotes. Genome Biol Evol 7:2289–2309. https://doi.org/10.1093/gbe/evv141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hackett SJ, Kimball RT, Reddy S et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768. https://doi.org/10.1126/science.1157704

    Article  CAS  PubMed  Google Scholar 

  78. Christoffels A, Koh EGL, Chia J-M et al (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151. https://doi.org/10.1093/molbev/msh114

    Article  CAS  PubMed  Google Scholar 

  79. Conkright MD, Wani MA, Lingrel JB (2001) Lung Krüppel-like factor contains an autoinhibitory domain that regulates its transcriptional activation by binding WWP1, an E3 ubiquitin ligase. J Biol Chem 276:29299–29306. https://doi.org/10.1074/jbc.M103670200

    Article  CAS  PubMed  Google Scholar 

  80. Geiman DE, Ton-That H, Johnson JM, Yang VW (2000) Transactivation and growth suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res 28:1106–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mas C, Lussier-Price M, Soni S et al (2011) Structural and functional characterization of an atypical activation domain in erythroid Kruppel-like factor (EKLF). Proc Natl Acad Sci USA 108:10484–10489. https://doi.org/10.1073/pnas.1017029108

    Article  PubMed  PubMed Central  Google Scholar 

  82. Knights AJ, Yik JJ, Mat Jusoh H et al (2016) Krüppel-like factor 3 (KLF3/BKLF) is required for widespread repression of the inflammatory modulator Galectin-3 (Lgals3). J Biol Chem 291:16048–16058. https://doi.org/10.1074/jbc.M116.715748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Klein RH, Hu W, Kashgari G et al (2017) Characterization of enhancers and the role of the transcription factor KLF7 in regulating corneal epithelial differentiation. J Biol Chem 292:18937–18950. https://doi.org/10.1074/jbc.M117.793117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Das A, Fernandez-Zapico ME, Cao S et al (2006) Disruption of an SP2/KLF6 repression complex by SHP is required for farnesoid X receptor-induced endothelial cell migration. J Biol Chem 281:39105–39113. https://doi.org/10.1074/jbc.M607720200

    Article  CAS  PubMed  Google Scholar 

  85. Zhang H, Zhu X, Chen J et al (2015) Krüppel-like factor 12 is a novel negative regulator of forkhead box O1 expression: a potential role in impaired decidualization. Reprod Biol Endocrinol 13:80. https://doi.org/10.1186/s12958-015-0079-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pacheco D, Warfield L, Brajcich M et al (2018) Transcription activation domains of the yeast factors Met4 and Ino2: tandem activation domains with properties similar to the yeast Gcn4 activator. Mol Cell Biol. https://doi.org/10.1128/MCB.00038-18

    Article  PubMed  PubMed Central  Google Scholar 

  88. Warfield L, Tuttle LM, Pacheco D et al (2014) A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface. Proc Natl Acad Sci USA 111:E3506–3513. https://doi.org/10.1073/pnas.1412088111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Carbone L, Harris RA, Gnerre S et al (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201. https://doi.org/10.1038/nature13679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chong S, Dugast-Darzacq C, Liu Z et al (2018) Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science. https://doi.org/10.1126/science.aar2555

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Health of the Czech Republic 15-32935A.

Author information

Authors and Affiliations

Authors

Contributions

MP, MH and KJ performed the experiments. MP conceived the project. MP, AK and LPK wrote the manuscript. All authors have contributed critical intellectual content and have approved the final manuscript.

Corresponding authors

Correspondence to Martin Piskacek, Andrea Knight or Liam P. Keegan.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 434 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piskacek, M., Havelka, M., Jendruchova, K. et al. The evolution of the 9aaTAD domain in Sp2 proteins: inactivation with valines and intron reservoirs. Cell. Mol. Life Sci. 77, 1793–1810 (2020). https://doi.org/10.1007/s00018-019-03251-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03251-w

Keywords

Navigation