Skip to main content
Log in

Germline-specific dgcr8 knockout in zebrafish using a BACK approach

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Zebrafish is an important model to study developmental biology and human diseases. However, an effective approach to achieve spatial and temporal gene knockout in zebrafish has not been well established. In this study, we have developed a new approach, namely bacterial artificial chromosome-rescue-based knockout (BACK), to achieve conditional gene knockout in zebrafish using the Cre/loxP system. We have successfully deleted the DiGeorge syndrome critical region gene 8 (dgcr8) in zebrafish germ line and demonstrated that the maternal-zygotic dgcr8 (MZdgcr8) embryos exhibit MZdicer-like phenotypes with morphological defects which could be rescued by miR-430, indicating that canonical microRNAs play critical role in early development. Our findings establish that Cre/loxP-mediated tissue-specific gene knockout could be achieved using this BACK strategy and that canonical microRNAs play important roles in early embryonic development in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  Google Scholar 

  3. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Auer TO, Del BF (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69:142–150

    Article  CAS  PubMed  Google Scholar 

  5. Ni TT, Lu J, Zhu M, Maddison LA, Boyd KL, Huskey L, Ju B, Hesselson D, Zhong TP, Page-McCaw PS, Stainier DY, Chen W (2012) Conditional control of gene function by an invertible gene trap in zebrafish. Proc Natl Acad Sci USA 109:15389–15394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ablain J, Durand EM, Yang S, Zhou Y, Zon LI (2015) A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 32:756–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  CAS  PubMed  Google Scholar 

  8. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RN, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh JR (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8:e68708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoshijima K, Jurynec MJ, Grunwald DJ (2016) Precise editing of the zebrafish genome made simple and efficient. Dev Cell 36:654–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  14. Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spruce T, Pernaute B, Di-Gregorio A, Cobb BS, Merkenschlager M, Manzanares M, Rodriguez TA (2010) An early developmental role for miRNAs in the maintenance of extraembryonic stem cells in the mouse embryo. Dev Cell 19:207–219

    Article  CAS  PubMed  Google Scholar 

  16. Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35:217–218

    Article  CAS  PubMed  Google Scholar 

  17. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  CAS  PubMed  Google Scholar 

  18. Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA 109:17484–17489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Y, Luo D, Lei Y, Hu W, Zhao H, Cheng CH (2014) A highly effective TALEN-mediated approach for targeted gene disruption in Xenopus tropicalis and zebrafish. Methods 69:58–66

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Luo D, Zhao H, Zhu Z, Hu W, Cheng CH (2013) Inheritable and precise large genomic deletions of non-coding RNA genes in zebrafish using TALENs. PLoS One 8:e76387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Wu P, Liu Y, Wang D, Cheng CH (2014) Temporal and spatial expression of the four Igf ligands and two Igf type 1 receptors in zebrafish during early embryonic development. Gene Expr Patterns 15:104–111

    Article  CAS  PubMed  Google Scholar 

  22. Suster ML, Abe G, Schouw A, Kawakami K (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6:1998–2021

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Zhao H, Cheng CH (2016) Mutagenesis in Xenopus and Zebrafish using TALENs. Methods Mol Biol 1338:207–227

    Article  CAS  PubMed  Google Scholar 

  24. Yang H, Zhou Y, Gu J, Xie S, Xu Y, Zhu G, Wang L, Huang J, Ma H, Yao J (2013) Deep mRNA sequencing analysis to capture the transcriptome landscape of zebrafish embryos and larvae. PLoS One 8:e64058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu P, Jenkins NA, Copeland NG (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiong F, Wei ZQ, Zhu ZY, Sun YH (2013) Targeted expression in zebrafish primordial germ cells by Cre/loxP and Gal4/UAS systems. Mar Biotechnol (NY) 15:526–539

    Article  CAS  PubMed  Google Scholar 

  29. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  CAS  PubMed  Google Scholar 

  30. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–534

    Article  CAS  PubMed  Google Scholar 

  31. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  34. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8:753–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ (2013) Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503:360–364

  37. Lund E, Liu M, Hartley RS, Sheets MD, Dahlberg JE (2009) Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA 15:2351–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318:271–274

    Article  CAS  PubMed  Google Scholar 

  39. Rosa A, Spagnoli FM, Brivanlou AH (2009) The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. Dev Cell 16:517–527

    Article  CAS  PubMed  Google Scholar 

  40. van Boxtel AL, Chesebro JE, Heliot C, Ramel MC, Stone RK, Hill CS (2015) A temporal window for signal activation dictates the dimensions of a nodal signaling domain. Dev Cell 35:175–185

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks are given to Dr. Koichi Kawakami (National Institute of Genetics, Japan) and Dr. Maximiliano L Suster (Uni Research AS, Norway) for the piTol2 plasmids. We thank Dr. Daiguan Yu (Guangzhou Institutes of Biomedicine and Health, China) for suggestions on the design of BAC recombineering, and Dr. Didier Stainier (Max Planck Institute for Heart and Lung Research, Germany) for critical comments on the manuscript. We thank Ms. Kathy W.Y. Sham for technical assistance and the Core Laboratories in the School of Biomedical Sciences for the provision of equipment and technical support.

This work was supported by the Research Grant Council of Hong Kong (Grant No. 14119715) and the Fundamental Research Funds for the Central Universities (Grant Nos. 151gzs102 and 151gzs121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. K. Cheng.

Additional information

Y. Liu and Z. Zhu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 846 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhu, Z., Ho, I.H.T. et al. Germline-specific dgcr8 knockout in zebrafish using a BACK approach. Cell. Mol. Life Sci. 74, 2503–2511 (2017). https://doi.org/10.1007/s00018-017-2471-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2471-7

Keywords

Navigation