Skip to main content

Advertisement

Log in

Molecular basis of mycobacterial survival in macrophages

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Author Correction to this article was published on 11 October 2017

This article has been updated

Abstract

Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity’s most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 11 October 2017

    One of the author affiliations was missed to include in the original publication. The correct information is given below.

References

  1. Hybiske K, Stephens RS (2008) Exit strategies of intracellular pathogens. Nat Rev Microbiol 6:99–110

    Article  CAS  PubMed  Google Scholar 

  2. Niki Y, Kishimoto T (1996) Epidemiology of intracellular pathogens. Clin Microbiol Infect 1(Suppl 1):S11–S13

    Article  PubMed  Google Scholar 

  3. Khan N, Gowthaman U, Pahari S, Agrewala JN (2012) Manipulation of costimulatory molecules by intracellular pathogens: veni, vidi, vici!! PLoS Pathog 8:e1002676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Casadevall A (2008) Evolution of Intracellular Pathogens. Annu Rev Microbiol 62:19–33

    Article  CAS  PubMed  Google Scholar 

  5. Zhen Y, Stenmark H (2015) Cellular functions of Rab GTPases at a glance. J Cell Sci 128:3171–3176

    Article  CAS  PubMed  Google Scholar 

  6. Weiss G, Schaible UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264:182–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pandey S, Kawai T, Akira S (2015) Microbial sensing by toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Med 7:a016246

    Article  CAS  Google Scholar 

  8. Janeway CA (2013) Pillars article: approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989. 54:1–13. J Immunol 191:4475–4487

    CAS  PubMed  Google Scholar 

  9. Randow F, MacMicking JD, James LC (2013) Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 340:701–706

    Article  CAS  PubMed  Google Scholar 

  10. MacMicking JD (2014) Cell-autonomous effector mechanisms against Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 4:a018507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. WHO Global Tuberculosis Report (2016) http://apps.who.int/iris/bitstream/10665/250441/1/9789241565394-eng.pdf?ua=1. Accessed 18 Nov 2016

  12. Brode SK, Daley CL, Marras TK (2014) The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis 18:1370–1377

    Article  CAS  PubMed  Google Scholar 

  13. Wu U-I, Holland SM (2015) Host susceptibility to non-tuberculous mycobacterial infections. Lancet Infect Dis 15:968–980

    Article  CAS  PubMed  Google Scholar 

  14. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:1–17

    Article  CAS  Google Scholar 

  15. Hett EC, Rubin EJ (2008) Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 72:126–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stamm CE, Collins AC, Shiloh MU (2015) Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev 264:204–219

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gordon S (2016) Phagocytosis: an immunobiologic process. Immunity 44:463–475

    Article  CAS  PubMed  Google Scholar 

  18. Dorhoi A, Desel C, Yeremeev V et al (2010) The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med 207:777–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Underhill DM, Pearlman E (2015) Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity 43:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108:3168–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yonekawa A, Saijo S, Hoshino Y et al (2014) Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41:402–413

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa E, Ishikawa T, Morita YS et al (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rao V, Gao F, Chen B et al (2006) Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest 116:1660–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dao DN, Sweeney K, Hsu T et al (2008) Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production. PLoS Pathog 4:e1000081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Heitmann L, Schoenen H, Ehlers S et al (2013) Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology 218:506–516

    Article  CAS  PubMed  Google Scholar 

  26. Court N, Vasseur V, Vacher R et al (2010) Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. J Immunol 184:7057–7070

    Article  CAS  PubMed  Google Scholar 

  27. Galán JE, Lara-Tejero M, Marlovits TC, Wagner S (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lim JS, Shin M, Kim H-J et al (2014) Caveolin-1 mediates Salmonella invasion via the regulation of SopE-dependent Rac1 activation and actin reorganization. J Infect Dis 210:793–802

    Article  PubMed  CAS  Google Scholar 

  29. Flo TH, Ryan L, Kilaas L et al (2000) Involvement of CD14 and beta2-integrins in activating cells with soluble and particulate lipopolysaccharides and mannuronic acid polymers. Infect Immun 68:6770–6776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bergstrøm B, Aune MH, Awuh JA et al (2015) TLR8 senses Staphylococcus aureus RNA in human primary monocytes and macrophages and induces IFN-β production via a TAK1-IKKβ-IRF5 signaling pathway. J Immunol 195:1100–1111

    Article  PubMed  CAS  Google Scholar 

  31. Lien E, Sellati TJ, Yoshimura A et al (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274:33419–33425

    Article  CAS  PubMed  Google Scholar 

  32. Flo TH, Halaas O, Torp S et al (2001) Differential expression of Toll-like receptor 2 in human cells. J Leukoc Biol 69:474–481

    CAS  PubMed  Google Scholar 

  33. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  34. Awuh JA, Haug M, Mildenberger J et al (2015) Keap1 regulates inflammatory signaling in Mycobacterium avium-infected human macrophages. Proc Natl Acad Sci 112:E4272–E4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Motsinger-Reif AA, Antas PRZ, Oki NO et al (2010) Polymorphisms in IL-1beta, vitamin D receptor Fok1, and Toll-like receptor 2 are associated with extrapulmonary tuberculosis. BMC Med Genet 11:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ma M, Xie L, Wu S et al (2010) Toll-like receptors, tumor necrosis factor-α, and interleukin-10 gene polymorphisms in risk of pulmonary tuberculosis and disease severity. Hum Immunol 71:1005–1010

    Article  CAS  PubMed  Google Scholar 

  37. Park BS, Song DH, Kim HM et al (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195

    Article  CAS  PubMed  Google Scholar 

  38. Reiling N, Hölscher C, Fehrenbach A et al (2002) Cutting edge: toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169:3480–3484

    Article  CAS  PubMed  Google Scholar 

  39. Appelberg R (2006) Pathogenesis of Mycobacterium avium infection: typical responses to an atypical mycobacterium? Immunol Res 35:179–190

    Article  CAS  PubMed  Google Scholar 

  40. Saiga H, Shimada Y, Takeda K (2011) Innate immune effectors in mycobacterial infection. Clin Dev Immunol 2011:347594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hölscher C, Reiling N, Schaible UE et al (2008) Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol 38:680–694

    Article  PubMed  CAS  Google Scholar 

  42. Fremond CM, Togbe D, Doz E et al (2007) IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179:1178–1189

    Article  CAS  PubMed  Google Scholar 

  43. von Bernuth H, Picard C, Puel A, Casanova J-L (2012) Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans. Eur J Immunol 42:3126–3135

    Article  CAS  Google Scholar 

  44. de Jong R, Altare F, Haagen IA et al (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280:1435–1438

    Article  PubMed  Google Scholar 

  45. Nair S, Ramaswamy PA, Ghosh S et al (2009) The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. J Immunol 183:6269–6281

    Article  CAS  PubMed  Google Scholar 

  46. Parveen N, Varman R, Nair S et al (2013) Endocytosis of Mycobacterium tuberculosis heat shock protein 60 is required to induce interleukin-10 production in macrophages. J Biol Chem 288:24956–24971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pathak SK, Basu S, Basu KK et al (2007) Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 8:610–618

    Article  CAS  PubMed  Google Scholar 

  48. Pecora ND, Gehring AJ, Canaday DH et al (2006) Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J Immunol 177:422–429

    Article  CAS  PubMed  Google Scholar 

  49. Dorhoi A, Kaufmann SHE (2014) Perspectives on host adaptation in response to Mycobacterium tuberculosis: modulation of inflammation. Semin Immunol 26:533–542

    Article  CAS  PubMed  Google Scholar 

  50. Doz E, Rose S, Nigou J et al (2007) Acylation determines the toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J Biol Chem 282:26014–26025

    Article  CAS  PubMed  Google Scholar 

  51. Cambier CJ, Takaki KK, Larson RP et al (2014) Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505:218–222

    Article  CAS  PubMed  Google Scholar 

  52. Underhill DM, Goodridge HS (2012) Information processing during phagocytosis. Nat Rev Immunol 12:492–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  54. Anes E, Kühnel MP, Bos E et al (2003) Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 5:793–802

    Article  CAS  PubMed  Google Scholar 

  55. Zaas DW, Duncan M, Rae Wright J, Abraham SN (2005) The role of lipid rafts in the pathogenesis of bacterial infections. Biochim Biophys Acta 1746:305–313

    Article  CAS  PubMed  Google Scholar 

  56. Gekara NO, Jacobs T, Chakraborty T, Weiss S (2005) The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 7:1345–1356

    Article  CAS  PubMed  Google Scholar 

  57. Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1650

    Article  CAS  PubMed  Google Scholar 

  58. Shin D-M, Yang C-S, Lee J-Y et al (2008) Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C zeta in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cell Microbiol 10:1893–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bogdan C, Röllinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76

    Article  CAS  PubMed  Google Scholar 

  60. Nathan C (2003) Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest 111:769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ogier-Denis E, Ben Mkaddem S, Vandewalle A (2008) NOX enzymes and Toll-like receptor signaling. Semin Immunopathol 30:291–300

    Article  CAS  PubMed  Google Scholar 

  62. Liu Q, Wang J, Sandford AJ et al (2015) Association of CYBB polymorphisms with tuberculosis susceptibility in the Chinese Han population. Infect Genet Evol 33:169–175

    Article  CAS  PubMed  Google Scholar 

  63. Gómez LM, Anaya J-M, Vilchez JR et al (2007) A polymorphism in the inducible nitric oxide synthase gene is associated with tuberculosis. Tuberculosis (Edinb) 87:288–294

    Article  CAS  Google Scholar 

  64. Itoh K, Wakabayashi N, Katoh Y et al (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8:379–391

    Article  CAS  PubMed  Google Scholar 

  65. Kwak M-K, Wakabayashi N, Itoh K et al (2003) Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278:8135–8145

    Article  CAS  PubMed  Google Scholar 

  66. Lee D-F, Kuo H-P, Liu M et al (2009) KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 36:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thu KL, Pikor LA, Chari R et al (2011) Genetic disruption of KEAP1/CUL3 E3 ubiquitin ligase complex components is a key mechanism of NF-kappaB pathway activation in lung cancer. J Thorac Oncol 6:1521–1529

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shin D-M, Jeon B-Y, Lee H-M et al (2010) Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog 6:e1001230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miller JL, Velmurugan K, Cowan MJ, Briken V (2010) The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog 6:e1000864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y (2015) Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev 264:220–232

    Article  CAS  PubMed  Google Scholar 

  71. Trivedi A, Singh N, Bhat SA et al (2012) Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 60:263–324

    Article  CAS  PubMed  Google Scholar 

  72. Smith LM, Dixon EF, May RC (2015) The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation. Cell Microbiol 17:702–713

    Article  CAS  PubMed  Google Scholar 

  73. Via LE, Deretic D, Ulmer RJ et al (1997) Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem 272:13326–13331

    Article  CAS  PubMed  Google Scholar 

  74. Zhu F, Zhou Y, Jiang C, Zhang X (2015) Role of JAK-STAT signaling in maturation of phagosomes containing Staphylococcus aureus. Sci Rep 5:14854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Coers J, Vance RE, Fontana MF, Dietrich WF (2007) Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 9:2344–2357

    Article  CAS  PubMed  Google Scholar 

  76. Kang PB, Azad AK, Torrelles JB et al (2005) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202:987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Russell DG (2011) Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev 240:252–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ehrt S, Rhee K, Schnappinger D (2015) Mycobacterial genes essential for the pathogen’s survival in the host. Immunol Rev 264:319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Halaas O, Steigedal M, Haug M et al (2010) Intracellular Mycobacterium avium intersect transferrin in the Rab11(+) recycling endocytic pathway and avoid lipocalin 2 trafficking to the lysosomal pathway. J Infect Dis 201:783–792

    Article  PubMed  PubMed Central  Google Scholar 

  80. Flo TH, Smith KD, Sato S et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921

    Article  CAS  PubMed  Google Scholar 

  81. McDonough KAA, Kress Y, Bloom BRR (1993) The interaction of Mycobacterium tuberculosis with macrophages: a study of phagolysosome fusion. Infect Immun 2:232–235

    CAS  Google Scholar 

  82. de Chastellier C (2009) The many niches and strategies used by pathogenic mycobacteria for survival within host macrophages. Immunobiology 214:526–542

    Article  PubMed  CAS  Google Scholar 

  83. de Chastellier C, Forquet F, Gordon A, Thilo L (2009) Mycobacterium requires an all-around closely apposing phagosome membrane to maintain the maturation block and this apposition is re-established when it rescues itself from phagolysosomes. Cell Microbiol 11:1190–1207

    Article  PubMed  CAS  Google Scholar 

  84. Mattow J, Siejak F, Hagens K et al (2006) Proteins unique to intraphagosomally grown Mycobacterium tuberculosis. Proteomics 6:2485–2494

    Article  CAS  PubMed  Google Scholar 

  85. Rohde KH, Veiga DFT, Caldwell S et al (2012) Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog 8:e1002769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McNamara M, Tzeng S-C, Maier C et al (2012) Surface proteome of “Mycobacterium avium subsp. hominissuis” during the early stages of macrophage infection. Infect Immun 80:1868–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ferrari G, Langen H, Naito M, Pieters J (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97:435–447

    Article  CAS  PubMed  Google Scholar 

  89. Podinovskaia M, Lee W, Caldwell S, Russell DG (2013) Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell Microbiol 15:843–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gouzy A, Poquet Y, Neyrolles O (2014) Amino acid capture and utilization within the Mycobacterium tuberculosis phagosome. Future Microbiol 9:631–637

    Article  CAS  PubMed  Google Scholar 

  91. Gouzy A, Larrouy-Maumus G, Bottai D et al (2014) Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection. PLoS Pathog 10:e1003928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Torrelles JB, Schlesinger LS (2010) Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis (Edinb) 90:84–93

    Article  CAS  Google Scholar 

  93. Welin A, Winberg ME, Abdalla H et al (2008) Incorporation of Mycobacterium tuberculosis lipoarabinomannan into macrophage membrane rafts is a prerequisite for the phagosomal maturation block. Infect Immun 76:2882–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vergne I, Chua J, Deretic V (2003) Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 198:653–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Shukla S, Richardson ET, Athman JJ et al (2014) Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog 10:e1004471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Gaur RL, Ren K, Blumenthal A et al (2014) LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 10:e1004376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Vergne I, Chua J, Lee H-H et al (2005) Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci USA 102:4033–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bach H, Papavinasasundaram KG, Wong D et al (2008) Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3:316–322

    Article  CAS  PubMed  Google Scholar 

  99. Wong D, Bach H, Sun J et al (2011) Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci USA 108:19371–19376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun J, Wang X, Lau A et al (2010) Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine RAW 264.7 macrophages. PLoS One 5:e8769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Simeone R, Bottai D, Frigui W et al (2015) ESX/type VII secretion systems of mycobacteria: insights into evolution, pathogenicity and protection. Tuberculosis (Edinb) 95(Suppl 1):S150–S154

    Article  CAS  Google Scholar 

  102. Mahairas GG, Sabo PJ, Hickey MJ et al (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pym AS, Brodin P, Brosch R et al (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717

    Article  CAS  PubMed  Google Scholar 

  104. Houben D, Demangel C, van Ingen J et al (2012) ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14:1287–1298

    Article  CAS  PubMed  Google Scholar 

  105. Lewis KN, Liao R, Guinn KM et al (2003) Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guérin attenuation. J Infect Dis 187:117–123

    Article  PubMed  Google Scholar 

  106. van der Wel N, Hava D, Houben D et al (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298

    Article  PubMed  CAS  Google Scholar 

  107. Jamwal SV, Mehrotra P, Singh A et al (2016) Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep 6:23089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Watson RO, Manzanillo PS, Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:803–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun J, Siroy A, Lokareddy RK et al (2015) The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD. Nat Struct Mol Biol 22:672–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Danilchanka O, Sun J, Pavlenok M et al (2014) An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity. Proc Natl Acad Sci USA 111:6750–6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Siegrist MS, Steigedal M, Ahmad R et al (2014) Mycobacterial Esx-3 requires multiple components for iron acquisition. MBio 5:e01073–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Serafini A, Boldrin F, Palù G, Manganelli R (2009) Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 191:6340–6344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bottai D, Di Luca M, Majlessi L et al (2012) Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol 83:1195–1209

    Article  CAS  PubMed  Google Scholar 

  114. Braunstein M, Brown AM, Kurtz S, Jacobs WR (2001) Two nonredundant SecA homologues function in mycobacteria. J Bacteriol 183:6979–6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sullivan JT, Young EF, McCann JR, Braunstein M (2012) The Mycobacterium tuberculosis SecA2 system subverts phagosome maturation to promote growth in macrophages. Infect Immun 80:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Danelishvili L, Bermudez LE (2015) Mycobacterium avium MAV_2941 mimics phosphoinositol-3-kinase to interfere with macrophage phagosome maturation. Microbes Infect 17:628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gillespie JJ, Kaur SJ, Rahman MS et al (2015) Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 39:47–80

    PubMed  Google Scholar 

  118. Mellouk N, Enninga J (2016) Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm. Front Cell Infect Microbiol 6:35

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schnupf P, Portnoy DA (2007) Listeriolysin O: a phagosome-specific lysin. Microbes Infect 9:1176–1187

    Article  CAS  PubMed  Google Scholar 

  120. Nakagawa I, Amano A, Mizushima N et al (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040

    Article  CAS  PubMed  Google Scholar 

  121. Du J, Reeves AZ, Klein JA et al (2016) The type III secretion system apparatus determines the intracellular niche of bacterial pathogens. Proc Natl Acad Sci USA 113:4794–4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Knodler LA (2015) Salmonella enterica: living a double life in epithelial cells. Curr Opin Microbiol 23:23–31

    Article  CAS  PubMed  Google Scholar 

  123. Bakowski MA, Braun V, Brumell JH (2008) Salmonella-containing vacuoles: directing traffic and nesting to grow. Traffic 9:2022–2031

    Article  CAS  PubMed  Google Scholar 

  124. Travier L, Lecuit M (2014) Listeria monocytogenes ActA: a new function for a “classic” virulence factor. Curr Opin Microbiol 17:53–60

    Article  CAS  PubMed  Google Scholar 

  125. Stamm LM, Morisaki JH, Gao L-Y et al (2003) Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198:1361–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Collins CA, De Mazière A, van Dijk S et al (2009) Atg5-independent sequestration of ubiquitinated mycobacteria. PLoS Pathog 5:e1000430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  128. Pelka K, Shibata T, Miyake K, Latz E (2016) Nucleic acid-sensing TLRs and autoimmunity: novel insights from structural and cell biology. Immunol Rev 269:60–75

    Article  CAS  PubMed  Google Scholar 

  129. Celhar T, Magalhães R, Fairhurst A-M (2012) TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol Res 53:58–77

    Article  CAS  PubMed  Google Scholar 

  130. Husebye H, Aune MH, Stenvik J et al (2010) The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 33:583–596

    Article  CAS  PubMed  Google Scholar 

  131. Kagan JC, Su T, Horng T et al (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9:361–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Carty M, Goodbody R, Schröder M et al (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7:1074–1081

    Article  CAS  PubMed  Google Scholar 

  133. Heil F, Hemmi H, Hochrein H et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  CAS  PubMed  Google Scholar 

  134. Bergstrøm B, Aune MH, Awuh JA et al (2015) TLR8 senses Staphylococcus aureus RNA in human primary monocytes and macrophages and induces IFNβ production via a TAK1-IKKβ-IRF5 signaling pathway. J Immunol (in press)

  135. Eigenbrod T, Pelka K, Latz E et al (2015) TLR8 senses bacterial RNA in human monocytes and plays a nonredundant role for recognition of Streptococcus pyogenes. J Immunol 195:1092–1099

    Article  CAS  PubMed  Google Scholar 

  136. Mancuso G, Gambuzza M, Midiri A et al (2009) Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol 10:587–594

    Article  CAS  PubMed  Google Scholar 

  137. Tanji H, Ohto U, Shibata T et al (2015) Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 22:109–115

    Article  CAS  PubMed  Google Scholar 

  138. Krüger A, Oldenburg M, Chebrolu C et al (2015) Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep 16:1656–1663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Shibata T, Ohto U, Nomura S et al (2016) Guanosine and its modified derivatives are endogenous ligands for TLR7. Int Immunol 28:211–222

    Article  CAS  PubMed  Google Scholar 

  140. Oldenburg M, Krüger A, Ferstl R et al (2012) TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337:1111–1115

    Article  CAS  PubMed  Google Scholar 

  141. Davila S, Hibberd ML, Hari Dass R et al (2008) Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet 4:e1000218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lai Y-F, Lin T-M, Wang C-H et al (2016) Functional polymorphisms of the TLR7 and TLR8 genes contribute to Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 98:125–131

    Article  CAS  Google Scholar 

  143. Ohto U, Shibata T, Tanji H et al (2015) Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520:702–705

    Article  CAS  PubMed  Google Scholar 

  144. Bafica A, Scanga CA, Feng CG et al (2005) TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202:1715–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Torres-García D, Cruz-Lagunas A, García-Sancho Figueroa MC et al (2013) Variants in toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population. J Transl Med 11:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Velez DR, Wejse C, Stryjewski ME et al (2010) Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet 127:65–73

    Article  CAS  PubMed  Google Scholar 

  147. Auerbuch V, Brockstedt DG, Meyer-Morse N et al (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200:527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Carrero JA, Calderon B, Unanue ER (2004) Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med 200:535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. O’Connell RM, Saha SK, Vaidya SA et al (2004) Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200:437–445

    Article  PubMed  PubMed Central  Google Scholar 

  150. Rayamajhi M, Humann J, Penheiter K et al (2010) Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma. J Exp Med 207:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kearney SJ, Delgado C, Eshleman EM et al (2013) Type I IFNs downregulate myeloid cell IFN-γ receptor by inducing recruitment of an early growth response 3/NGFI-A binding protein 1 complex that silences ifngr1 transcription. J Immunol 191:3384–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ordway D, Palanisamy G, Henao-Tamayo M et al (2007) The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol 179:2532–2541

    Article  CAS  PubMed  Google Scholar 

  153. Stanley SA, Johndrow JE, Manzanillo P, Cox JS (2007) The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152

    Article  CAS  PubMed  Google Scholar 

  154. Manca C, Tsenova L, Freeman S et al (2005) Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interf Cytokine Res 25:694–701

    Article  CAS  Google Scholar 

  155. Berry MPR, Graham CM, McNab FW et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ottenhoff THM, Dass RH, Yang N et al (2012) Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. PLoS One 7:e45839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zak DE, Penn-Nicholson A, Scriba TJ et al (2016) A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet. doi:10.1016/S0140-6736(15)01316-1

    PubMed Central  Google Scholar 

  158. Mcnab F, Mayer-barber K, Sher A et al (2015) Type I interferons in infectious disease. Nat Rev Immunol 15:87–103

    Article  CAS  PubMed  Google Scholar 

  159. Mayer-Barber KD, Sher A (2015) Cytokine and lipid mediator networks in tuberculosis. Immunol Rev 264:264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhao Y, Shao F (2016) Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr Opin Microbiol 29:37–42

    Article  CAS  PubMed  Google Scholar 

  162. Franchi L, Warner N, Viani K, Nuñez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227:106–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. McDonald C, Inohara N, Nuñez G (2005) Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280:20177–20180

    Article  CAS  PubMed  Google Scholar 

  164. Barnich N, Aguirre JE, Reinecker H-C et al (2005) Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-{kappa}B activation in muramyl dipeptide recognition. J Cell Biol 170:21–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gandotra S, Jang S, Murray PJ et al (2007) Nucleotide-binding oligomerization domain protein 2-deficient mice control infection with Mycobacterium tuberculosis. Infect Immun 75:5127–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Brooks MN, Rajaram MVS, Azad AK et al (2011) NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages. Cell Microbiol 13:402–418

    Article  CAS  PubMed  Google Scholar 

  167. Juárez E, Carranza C, Hernández-Sánchez F et al (2012) NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans. Eur J Immunol 42:880–889

    Article  PubMed  CAS  Google Scholar 

  168. Pandey AK, Yang Y, Jiang Z et al (2009) NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5:e1000500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. O’Connell RM, Vaidya SA, Perry AK et al (2005) Immune activation of type I IFNs by Listeria monocytogenes occurs independently of TLR4, TLR2, and receptor interacting protein 2 but involves TNFR-associated NF kappa B kinase-binding kinase 1. J Immunol 174:1602–1607

    Article  PubMed  Google Scholar 

  170. Stockinger S, Reutterer B, Schaljo B et al (2004) IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by a TLR- and Nod2-independent mechanism. J Immunol 173:7416–7425

    Article  CAS  PubMed  Google Scholar 

  171. Rathinam VAK, Fitzgerald KA (2016) Inflammasome complexes: emerging mechanisms and effector functions. Cell 165:792–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hagar JA, Powell DA, Aachoui Y et al (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265:130–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Aachoui Y, Leaf IA, Hagar JA et al (2013) Caspase-11 protects against bacteria that escape the vacuole. Science 339:975–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Miao EA, Mao DP, Yudkovsky N et al (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107:3076–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Samstad EO, Niyonzima N, Nymo S et al (2014) Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol 192:2837–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Eklund D, Welin A, Andersson H et al (2014) Human gene variants linked to enhanced NLRP3 activity limit intramacrophage growth of Mycobacterium tuberculosis. J Infect Dis 209:749–753

    Article  CAS  PubMed  Google Scholar 

  178. Abdalla H, Srinivasan L, Shah S et al (2012) Mycobacterium tuberculosis infection of dendritic cells leads to partially caspase-1/11-independent IL-1β and IL-18 secretion but not to pyroptosis. PLoS One 7:e40722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Akhter A, Caution K, Abu Khweek A et al (2012) Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37:35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rathinam VAK, Vanaja SK, Waggoner L et al (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150:606–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fernandes-Alnemri T, Yu J-W, Juliana C et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS (2012) Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11:469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Saiga H, Kitada S, Shimada Y et al (2012) Critical role of AIM2 in Mycobacterium tuberculosis infection. Int Immunol 24:637–644

    Article  CAS  PubMed  Google Scholar 

  184. Shah S, Bohsali A, Ahlbrand SE et al (2013) Cutting edge: Mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-β and AIM2 inflammasome-dependent IL-1β production via its ESX-1 secretion system. J Immunol 191:3514–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gringhuis SI, Kaptein TM, Wevers BA et al (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol 13:246–254

    Article  CAS  PubMed  Google Scholar 

  186. Meunier E, Wallet P, Dreier RF et al (2015) Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat Immunol 16:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Meunier E, Broz P (2016) Interferon-inducible GTPases in cell autonomous and innate immunity. Cell Microbiol 18:168–180

    Article  CAS  PubMed  Google Scholar 

  188. Meunier E, Dick MS, Dreier RF et al (2014) Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509:366–370

    Article  CAS  PubMed  Google Scholar 

  189. Kim B-H, Shenoy AR, Kumar P et al (2011) A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science 332:717–721

    Article  CAS  PubMed  Google Scholar 

  190. Mishra BB, Moura-Alves P, Sonawane A et al (2010) Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 12:1046–1063

    Article  CAS  PubMed  Google Scholar 

  191. Wu J, Sun L, Chen X et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830

    Article  CAS  PubMed  Google Scholar 

  192. Sun L, Wu J, Du F et al (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791

    Article  CAS  PubMed  Google Scholar 

  193. Hansen K, Prabakaran T, Laustsen A et al (2014) Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J 33:1654–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wassermann R, Gulen MF, Sala C et al (2014) Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17:799–810

    Article  CAS  Google Scholar 

  195. Liu PT, Stenger S, Li H et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773

    Article  CAS  PubMed  Google Scholar 

  196. Lopez-Lopez N, Gonzalez-Curiel I, Castañeda-Delgado J et al (2014) Vitamin D supplementation promotes macrophages’ anti-mycobacterial activity in type 2 diabetes mellitus patients with low vitamin D receptor expression. Microbes Infect 16:755–761

    Article  CAS  PubMed  Google Scholar 

  197. Sahl H-G, Shai Y (2015) Bacterial resistance to antimicrobial peptides. Biochim Biophys Acta 1848:3019–3020

    Article  CAS  PubMed  Google Scholar 

  198. Maria-Neto S, de Almeida KC, Macedo MLR, Franco OL (2015) Understanding bacterial resistance to antimicrobial peptides: from the surface to deep inside. Biochim Biophys Acta 1848:3078–3088

    Article  CAS  PubMed  Google Scholar 

  199. Motamedi N, Danelishvili L, Bermudez LE (2014) Identification of Mycobacterium avium genes associated with resistance to host antimicrobial peptides. J Med Microbiol 63:923–930

    Article  PubMed  PubMed Central  Google Scholar 

  200. Honda JR, Hess T, Malcolm KC et al (2015) Pathogenic nontuberculous mycobacteria resist and inactivate cathelicidin: implication of a novel role for polar mycobacterial lipids. PLoS One 10:e0126994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Alonso S, Pethe K, Russell DG, Purdy GE (2007) Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci USA 104:6031–6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Foss MH, Powers KM, Purdy GE (2012) Structural and functional characterization of mycobactericidal ubiquitin-derived peptides in model and bacterial membranes. Biochemistry 51:9922–9929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Purdy GE, Niederweis M, Russell DG (2009) Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol Microbiol 73:844–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Daugherty A, Powers KM, Standley MS et al (2011) Mycobacterium smegmatis RoxY is a repressor of oxyS and contributes to resistance to oxidative stress and bactericidal ubiquitin-derived peptides. J Bacteriol 193:6824–6833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sanjuan MA, Dillon CP, Tait SWG et al (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257

    Article  CAS  PubMed  Google Scholar 

  207. Delgado MA, Elmaoued RA, Davis AS et al (2008) Toll-like receptors control autophagy. EMBO J 27:1110–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Gutierrez MG, Master SS, Singh SB et al (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    Article  CAS  PubMed  Google Scholar 

  209. Xu Y, Liu X-D, Gong X, Eissa NT (2008) Signaling pathway of autophagy associated with innate immunity. Autophagy 4:110–112

    Article  CAS  PubMed  Google Scholar 

  210. Shi C-S, Kehrl JH (2010) TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 3:42

    Google Scholar 

  211. Rogov V, Dötsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53:167–178

    Article  CAS  PubMed  Google Scholar 

  212. Mostowy S, Sancho-Shimizu V, Hamon MA et al (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286:26987–26995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zheng YT, Shahnazari S, Brech A et al (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916

    Article  CAS  PubMed  Google Scholar 

  214. Huett A, Heath RJ, Begun J et al (2012) The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella typhimurium. Cell Host Microbe 12:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Manzanillo PS, Ayres JS, Watson RO et al (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501:512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Scherz-Shouval R, Shvets E, Fass E et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Singh SB, Ornatowski W, Vergne I et al (2010) Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol 12:1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Pilli M, Arko-Mensah J, Ponpuak M et al (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37:223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chandra P, Ghanwat S, Matta SK et al (2015) Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages. Sci Rep 5:16320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dupont N, Lacas-Gervais S, Bertout J et al (2009) Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6:137–149

    Article  CAS  PubMed  Google Scholar 

  221. Thurston TLM, Wandel MP, von Muhlinen N et al (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Maier O, Marvin SA, Wodrich H et al (2012) Spatiotemporal dynamics of adenovirus membrane rupture and endosomal escape. J Virol 86:10821–10828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Creasey EA, Isberg RR (2012) The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci USA 109:3481–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Shahnazari S, Yen W-L, Birmingham CL et al (2010) A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 8:137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Early J, Fischer K, Bermudez LE (2011) Mycobacterium avium uses apoptotic macrophages as tools for spreading. Microb Pathog 50:132–139

    Article  CAS  PubMed  Google Scholar 

  226. Castillo EF, Dekonenko A, Arko-Mensah J et al (2012) Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci USA 109:E3168–E3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Kimmey JM, Huynh JP, Weiss LA et al (2015) Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528:565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Behar SM, Baehrecke EH (2015) Tuberculosis: autophagy is not the answer. Nature 528:482–483

    Article  CAS  PubMed  Google Scholar 

  229. Lerena MC, Colombo MI (2011) Mycobacterium marinum induces a marked LC3 recruitment to its containing phagosome that depends on a functional ESX-1 secretion system. Cell Microbiol 13:814–835

    Article  CAS  PubMed  Google Scholar 

  230. Yoshikawa Y, Ogawa M, Hain T et al (2009) Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 11:1233–1240

    Article  CAS  PubMed  Google Scholar 

  231. Mostowy S, Cossart P (2012) Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol 22:283–291

    Article  CAS  PubMed  Google Scholar 

  232. Steele S, Brunton J, Ziehr B et al (2013) Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. PLoS Pathog 9:e1003562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Pujol C, Klein KA, Romanov GA et al (2009) Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect Immun 77:2251–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Martin CJ, Booty MG, Rosebrock TR et al (2012) Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12:289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Bermudez LE, Danelishvili L, Babrack L, Pham T (2015) Evidence for genes associated with the ability of Mycobacterium avium subsp. hominissuis to escape apoptotic macrophages. Front Cell Infect Microbiol 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  236. Parandhaman DK, Narayanan S (2014) Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 4:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Chow SH, Deo P, Naderer T (2016) Macrophage cell death in microbial infections. Cell Microbiol 18:466–474

    Article  CAS  PubMed  Google Scholar 

  238. Kayagaki N, Stowe IB, Lee BL et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671

    Article  CAS  PubMed  Google Scholar 

  239. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665

    Article  CAS  PubMed  Google Scholar 

  240. Wang Q, Imamura R, Motani K et al (2013) Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages. Int Immunol 25:363–372

    Article  CAS  PubMed  Google Scholar 

  241. Sauer J-D, Pereyre S, Archer KA et al (2011) Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc Natl Acad Sci USA 108:12419–12424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Welin A, Eklund D, Stendahl O, Lerm M (2011) Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLoS One 6:e20302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Master SS, Rampini SK, Davis AS et al (2008) Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3:224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Danelishvili L, Everman JL, McNamara MJ, Bermudez LE (2011) Inhibition of the plasma-membrane-associated serine protease cathepsin G by Mycobacterium tuberculosis Rv3364c suppresses caspase-1 and pyroptosis in macrophages. Front Microbiol 2:281

    PubMed  Google Scholar 

  245. Valerio LG (2007) Mammalian iron metabolism. Toxicol Mech Methods 17:497–517

    Article  CAS  PubMed  Google Scholar 

  246. Correnti C, Strong RK (2012) Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. J Biol Chem 287:13524–13531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Valdez Y, Grassl GA, Guttman JA et al (2009) Nramp1 drives an accelerated inflammatory response during Salmonella-induced colitis in mice. Cell Microbiol 11:351–362

    Article  CAS  PubMed  Google Scholar 

  248. Soe-Lin S, Apte SS, Andriopoulos B et al (2009) Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proc Natl Acad Sci USA 106:5960–5965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Meilang Q, Zhang Y, Zhang J et al (2012) Polymorphisms in the SLC11A1 gene and tuberculosis risk: a meta-analysis update. Int J Tuberc Lung Dis 16:437–446

    Article  CAS  PubMed  Google Scholar 

  250. Abergel RJ, Moore EG, Strong RK, Raymond KN (2006) Microbial evasion of the immune system: structural modifications of enterobactin impair siderocalin recognition. J Am Chem Soc 128:10998–10999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Goetz DH, Holmes MA, Borregaard N et al (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043

    Article  CAS  PubMed  Google Scholar 

  252. Neyrolles O, Wolschendorf F, Mitra A, Niederweis M (2015) Mycobacteria, metals, and the macrophage. Immunol Rev 264:249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Wells RM, Jones CM, Xi Z et al (2013) Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 9:e1003120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Rodriguez GM, Smith I (2006) Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol 188:424–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Saiga H, Nishimura J, Kuwata H et al (2008) Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium. J Immunol 181:8521–8527

    Article  CAS  PubMed  Google Scholar 

  256. Subramanian Vignesh K, Deepe GS (2016) Immunological orchestration of zinc homeostasis: the battle between host mechanisms and pathogen defenses. Arch Biochem Biophys. doi:10.1016/j.abb.2016.02.020

    PubMed  Google Scholar 

  257. Kehl-Fie TE, Skaar EP (2010) Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 14:218–224

    Article  CAS  PubMed  Google Scholar 

  258. Botella H, Peyron P, Levillain F et al (2011) Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10:248–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Dubnau E, Chan J, Mohan VP, Smith I (2005) Responses of Mycobacterium tuberculosis to growth in the mouse lung. Infect Immun 73:3754–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Schnappinger D, Ehrt S, Voskuil MI et al (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Vromman F, Subtil A (2014) Exploitation of host lipids by bacteria. Curr Opin Microbiol 17:38–45

    Article  CAS  PubMed  Google Scholar 

  262. Singh V, Jamwal S, Jain R et al (2012) Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12:669–681

    Article  CAS  PubMed  Google Scholar 

  263. Eoh H, Rhee KY (2014) Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci USA 111:4976–4981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zhang YJ, Reddy MC, Ioerger TR et al (2013) Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155:1296–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zumla A, Rao M, Wallis RS et al (2016) Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis 16:e47–e63

    Article  PubMed  Google Scholar 

  266. Ivanova EA, Orekhov AN (2016) Monocyte activation in immunopathology: cellular test for development of diagnostics and therapy. J Immunol Res 2016:4789279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. O’Garra A, Redford PS, McNab FW et al (2013) The immune response in tuberculosis. Annu Rev Immunol 31:475–527

    Article  PubMed  CAS  Google Scholar 

  268. Serhan CN, Chiang N, Dalli J (2015) The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin Immunol 27:200–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Bafica A, Scanga CA, Serhan C et al (2005) Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production. J Clin Invest 115:1601–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Songane M, Kleinnijenhuis J, Netea MG, van Crevel R (2012) The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 92:388–396

    Article  Google Scholar 

  271. Kim J-J, Lee H-M, Shin D-M et al (2012) Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11:457–468

    Article  CAS  PubMed  Google Scholar 

  272. Welin A, Raffetseder J, Eklund D et al (2011) Importance of phagosomal functionality for growth restriction of Mycobacterium tuberculosis in primary human macrophages. J Innate Immun 3:508–518

    Article  PubMed  PubMed Central  Google Scholar 

  273. Pethe K, Swenson DL, Alonso S et al (2004) Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc Natl Acad Sci USA 101:13642–13647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Sweet L, Schorey JS (2006) Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner. J Leukoc Biol 80:415–423

    Article  CAS  PubMed  Google Scholar 

  275. Cehovin A, Coates ARM, Hu Y et al (2010) Comparison of the moonlighting actions of the two highly homologous chaperonin 60 proteins of Mycobacterium tuberculosis. Infect Immun 78:3196–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Bulut Y, Michelsen KS, Hayrapetian L et al (2005) Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 280:20961–20967

    Article  CAS  PubMed  Google Scholar 

  277. Kim K, Sohn H, Kim J-S et al (2012) Mycobacterium tuberculosis Rv0652 stimulates production of tumour necrosis factor and monocytes chemoattractant protein-1 in macrophages through the Toll-like receptor 4 pathway. Immunology 136:231–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Kiemer AK, Senaratne RH, Hoppstädter J et al (2009) Attenuated activation of macrophage TLR9 by DNA from virulent mycobacteria. J Innate Immun 1:29–45

    Article  CAS  PubMed  Google Scholar 

  279. Tanne A, Ma B, Boudou F et al (2009) A murine DC-SIGN homologue contributes to early host defense against Mycobacterium tuberculosis. J Exp Med 206:2205–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Tailleux L, Schwartz O, Herrmann J-L et al (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Lee H-M, Yuk J-M, Shin D-M, Jo E-K (2009) Dectin-1 is inducible and plays an essential role for mycobacteria-induced innate immune responses in airway epithelial cells. J Clin Immunol 29:795–805

    Article  CAS  PubMed  Google Scholar 

  282. Józefowski S, Sobota A, Pawłowski A, Kwiatkowska K (2011) Mycobacterium tuberculosis lipoarabinomannan enhances LPS-induced TNF-α production and inhibits NO secretion by engaging scavenger receptors. Microb Pathog 50:350–359

    Article  PubMed  CAS  Google Scholar 

  283. Bowdish DME, Sakamoto K, Kim M-J et al (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 5:e1000474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Martinez VG, Escoda-Ferran C, Tadeu Simões I et al (2014) The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression. Cell Mol Immunol 11:343–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Pugin J, Heumann D, Tomasz A et al (1994) CD14 Is a pattern recognition receptor. Immunity 1:509–516

    Article  CAS  PubMed  Google Scholar 

  286. Lewthwaite JC, Coates AR, Tormay P et al (2001) Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69:7349–7355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Velasco-Velázquez MA, Barrera D, González-Arenas A et al (2003) Macrophage—Mycobacterium tuberculosis interactions: role of complement receptor 3. Microb Pathog 35:125–131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Research Council of Norway through Centres of Excellence Funding Scheme Project 223255/F50 and the Liaison Committee between NTNU and the Central Norway Regional Health Authority to the authors. We thank Dr. Magnus Steigedal, Dr. Markus Haug, and Dr. Jenny Ostrop for valuable feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trude Helen Flo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00018-017-2683-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awuh, J.A., Flo, T.H. Molecular basis of mycobacterial survival in macrophages. Cell. Mol. Life Sci. 74, 1625–1648 (2017). https://doi.org/10.1007/s00018-016-2422-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2422-8

Keywords

Navigation