Skip to main content

Advertisement

Log in

Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The skin forms a vital barrier between an organism’s external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Elias PM et al (2002) Basis for the permeability barrier abnormality in lamellar ichthyosis. Exp Dermatol 11(3):248–256

    Article  PubMed  Google Scholar 

  2. Schmuth M et al (2004) Structural and functional consequences of loricrin mutations in human loricrin keratoderma (Vohwinkel syndrome with ichthyosis). J Invest Dermatol 122(4):909–922

    Article  CAS  PubMed  Google Scholar 

  3. Albanesi C, Pastore S (2010) Pathobiology of chronic inflammatory skin diseases: interplay between keratinocytes and immune cells as a target for anti-inflammatory drugs. Curr Drug Metab 11(3):210–227

    Article  CAS  PubMed  Google Scholar 

  4. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445(7130):843–850

    Article  CAS  PubMed  Google Scholar 

  5. Feingold KR, Elias PM (2014) Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta 1841(3):280–294

    Article  CAS  PubMed  Google Scholar 

  6. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  PubMed  Google Scholar 

  7. van Smeden J et al (2014) The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta 1841(3):295–313

    Article  PubMed  CAS  Google Scholar 

  8. Rieger S et al (2015) The role of nuclear hormone receptors in cutaneous wound repair. Cell Biochem Funct 33(1):1–13

    Article  CAS  PubMed  Google Scholar 

  9. Taylor JS (2015) Biomolecules. The dark side of sunlight and melanoma. Science 347(6224):824

    Article  CAS  PubMed  Google Scholar 

  10. Narayanan DL, Saladi RN, Fox JL (2010) Ultraviolet radiation and skin cancer. Int J Dermatol 49(9):978–986

    Article  PubMed  Google Scholar 

  11. Gilchrest BA et al (1999) The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 340(17):1341–1348

    Article  CAS  PubMed  Google Scholar 

  12. Soehnge H, Ouhtit A, Ananthaswamy ON (1997) Mechanisms of induction of skin cancer by UV radiation. Front Biosci 2:d538–d551

    Article  CAS  PubMed  Google Scholar 

  13. Sturm RA (2009) Molecular genetics of human pigmentation diversity. Hum Mol Genet 18(R1):R9–R17

    Article  CAS  PubMed  Google Scholar 

  14. Cleaver JE (2005) Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 5(7):564–573

    Article  CAS  PubMed  Google Scholar 

  15. Nagpal S (2003) An orphan meets family members in skin. J Invest Dermatol 120(2):viii–x

  16. Hengge UR et al (2006) Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol 54(1):1–15 (Quiz 8–16)

  17. Schacke H, Docke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96(1):23–43

    Article  CAS  PubMed  Google Scholar 

  18. Schoepe S et al (2006) Glucocorticoid therapy-induced skin atrophy. Exp Dermatol 15(6):406–420

    Article  CAS  PubMed  Google Scholar 

  19. Sheu HM et al (1997) Depletion of stratum corneum intercellular lipid lamellae and barrier function abnormalities after long-term topical corticosteroids. Br J Dermatol 136(6):884–890

    Article  CAS  PubMed  Google Scholar 

  20. Kao JS et al (2003) Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J Invest Dermatol 120(3):456–464

    Article  CAS  PubMed  Google Scholar 

  21. Ashwell JD, Lu FW, Vacchio MS (2000) Glucocorticoids in T cell development and function*. Annu Rev Immunol 18:309–345

    Article  CAS  PubMed  Google Scholar 

  22. Smith AG, Muscat GE (2005) Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 37(10):2047–2063

    Article  CAS  PubMed  Google Scholar 

  23. Michalik L, Wahli W (2007) Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochim Biophys Acta 1771(8):991–998

    Article  CAS  PubMed  Google Scholar 

  24. Wahli W, Michalik L (2012) PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab 23(7):351–363

    Article  CAS  PubMed  Google Scholar 

  25. Braissant O et al (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137(1):354–366

    CAS  PubMed  Google Scholar 

  26. Rivier M et al (1998) Differential expression of peroxisome proliferator-activated receptor subtypes during the differentiation of human keratinocytes. J Invest Dermatol 111(6):1116–1121

    Article  CAS  PubMed  Google Scholar 

  27. Westergaard M et al (2003) Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin. J Invest Dermatol 121(5):1104–1117

    Article  CAS  PubMed  Google Scholar 

  28. Fluhr JW et al (2009) Topical peroxisome proliferator activated receptor activators accelerate postnatal stratum corneum acidification. J Invest Dermatol 129(2):365–374

    Article  CAS  PubMed  Google Scholar 

  29. Hatano Y et al (2011) Efficacy of combined peroxisome proliferator-activated receptor-alpha ligand and glucocorticoid therapy in a murine model of atopic dermatitis. J Invest Dermatol 131(9):1845–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jung K et al (2011) Peroxisome proliferator-activated receptor gamma-mediated suppression of dendritic cell function prevents the onset of atopic dermatitis in NC/Tnd mice. J Allergy Clin Immunol 127(2):420–429 (e1–6)

  31. Mastrofrancesco A et al (2014) Preclinical studies of a specific PPARgamma modulator in the control of skin inflammation. J Invest Dermatol 134(4):1001–1011

    Article  CAS  PubMed  Google Scholar 

  32. Sheu MY et al (2002) Topical peroxisome proliferator activated receptor-alpha activators reduce inflammation in irritant and allergic contact dermatitis models. J Invest Dermatol 118(1):94–101

    Article  CAS  PubMed  Google Scholar 

  33. Hanley K et al (1998) Keratinocyte differentiation is stimulated by activators of the nuclear hormone receptor PPARalpha. J Invest Dermatol 110(4):368–375

    Article  CAS  PubMed  Google Scholar 

  34. Komuves LG et al (1998) Ligands and activators of nuclear hormone receptors regulate epidermal differentiation during fetal rat skin development. J Invest Dermatol 111(3):429–433

    Article  CAS  PubMed  Google Scholar 

  35. Mao-Qiang M et al (2004) Peroxisome-proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation. J Invest Dermatol 123(2):305–312

    Article  CAS  PubMed  Google Scholar 

  36. Schmuth M et al (2004) Peroxisome proliferator-activated receptor (PPAR)-beta/delta stimulates differentiation and lipid accumulation in keratinocytes. J Invest Dermatol 122(4):971–983

    Article  CAS  PubMed  Google Scholar 

  37. Westergaard M et al (2001) Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid. J Invest Dermatol 116(5):702–712

    Article  CAS  PubMed  Google Scholar 

  38. Demerjian M et al (2006) Topical treatment with thiazolidinediones, activators of peroxisome proliferator-activated receptor-gamma, normalizes epidermal homeostasis in a murine hyperproliferative disease model. Exp Dermatol 15(3):154–160

    Article  CAS  PubMed  Google Scholar 

  39. Ellis CN et al (2000) Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte proliferation. Arch Dermatol 136(5):609–616

    Article  CAS  PubMed  Google Scholar 

  40. Kim DJ et al (2006) PPARbeta/delta selectively induces differentiation and inhibits cell proliferation. Cell Death Differ 13(1):53–60

    Article  CAS  PubMed  Google Scholar 

  41. Komuves LG et al (2000) Keratinocyte differentiation in hyperproliferative epidermis: topical application of PPARalpha activators restores tissue homeostasis. J Invest Dermatol 115(3):361–367

    Article  CAS  PubMed  Google Scholar 

  42. Komuves LG et al (2000) Stimulation of PPARalpha promotes epidermal keratinocyte differentiation in vivo. J Invest Dermatol 115(3):353–360

    Article  CAS  PubMed  Google Scholar 

  43. Lee SS et al (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15(6):3012–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmuth M et al (2002) Role of peroxisome proliferator-activated receptor alpha in epidermal development in utero. J Invest Dermatol 119(6):1298–1303

    Article  CAS  PubMed  Google Scholar 

  45. Man MQ et al (2008) Deficiency of PPARbeta/delta in the epidermis results in defective cutaneous permeability barrier homeostasis and increased inflammation. J Invest Dermatol 128(2):370–377

    Article  CAS  PubMed  Google Scholar 

  46. Demerjian M et al (2009) Activators of PPARs and LXR decrease the adverse effects of exogenous glucocorticoids on the epidermis. Exp Dermatol 18(7):643–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Michalik L et al (2001) Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)alpha and PPARbeta mutant mice. J Cell Biol 154(4):799–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Icre G, Wahli W, Michalik L (2006) Functions of the peroxisome proliferator-activated receptor (PPAR) alpha and beta in skin homeostasis, epithelial repair, and morphogenesis. J Investig Dermatol Symp Proc 11(1):30–35

    Article  CAS  PubMed  Google Scholar 

  49. Tan NS et al (2004) Essential role of Smad3 in the inhibition of inflammation-induced PPARbeta/delta expression. EMBO J 23(21):4211–4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan NS et al (2001) Critical roles of PPAR beta/delta in keratinocyte response to inflammation. Genes Dev 15(24):3263–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mirza RE et al (2015) Macrophage PPARgamma and impaired wound healing in type 2 diabetes. J Pathol 236(4):433–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lucas T et al (2010) Differential roles of macrophages in diverse phases of skin repair. J Immunol 184(7):3964–3977

    Article  CAS  PubMed  Google Scholar 

  53. Mirza R, DiPietro LA, Koh TJ (2009) Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol 175(6):2454–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bannon P et al (2013) Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. Dis Model Mech 6(6):1434–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khanna S et al (2010) Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 5(3):e9539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mirza R, Koh TJ (2011) Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine 56(2):256–264

    Article  CAS  PubMed  Google Scholar 

  57. Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18(5):461–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glass CK, Saijo K (2010) Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 10(5):365–376

    Article  CAS  PubMed  Google Scholar 

  59. Ricote M, Glass CK (2007) PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta 1771(8):926–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tyagi S et al (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2(4):236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86

    Article  CAS  PubMed  Google Scholar 

  62. Bongartz T et al (2005) Treatment of active psoriatic arthritis with the PPARgamma ligand pioglitazone: an open-label pilot study. Rheumatology (Oxford) 44(1):126–129

    Article  CAS  Google Scholar 

  63. Mittal R et al (2009) Efficacy and safety of combination acitretin and pioglitazone therapy in patients with moderate to severe chronic plaque-type psoriasis: a randomized, double-blind, placebo-controlled clinical trial. Arch Dermatol 145(4):387–393

    Article  CAS  PubMed  Google Scholar 

  64. Robertshaw H, Friedmann PS (2005) Pioglitazone: a promising therapy for psoriasis. Br J Dermatol 152(1):189–191

    Article  CAS  PubMed  Google Scholar 

  65. Shafiq N et al (2005) Pilot trial: pioglitazone versus placebo in patients with plaque psoriasis (the P6). Int J Dermatol 44(4):328–333

    Article  CAS  PubMed  Google Scholar 

  66. Behshad R, Cooper KD, Korman NJ (2008) A retrospective case series review of the peroxisome proliferator-activated receptor ligand rosiglitazone in the treatment of atopic dermatitis. Arch Dermatol 144(1):84–88

    Article  CAS  PubMed  Google Scholar 

  67. Boguniewicz M, Leung DY (2011) Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev 242(1):233–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dahten A et al (2008) Systemic PPARgamma ligation inhibits allergic immune response in the skin. J Invest Dermatol 128(9):2211–2218

    Article  CAS  PubMed  Google Scholar 

  69. Kawakami T et al (2009) Mast cells in atopic dermatitis. Curr Opin Immunol 21(6):666–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tachibana M et al (2008) Activation of peroxisome proliferator-activated receptor gamma suppresses mast cell maturation involved in allergic diseases. Allergy 63(9):1136–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Palmer CN et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38(4):441–446

    Article  CAS  PubMed  Google Scholar 

  72. Wallmeyer L et al (2015) Stimulation of PPARalpha normalizes the skin lipid ratio and improves the skin barrier of normal and filaggrin deficient reconstructed skin. J Dermatol Sci 80(2):102–110

    Article  CAS  PubMed  Google Scholar 

  73. Lee SE et al (2015) Pseudoceramide stimulates peroxisome proliferator-activated receptor-alpha expression in a murine model of atopic dermatitis: molecular basis underlying the anti-inflammatory effect and the preventive effect against steroid-induced barrier impairment. Arch Dermatol Res 307(9):781–792

    Article  CAS  PubMed  Google Scholar 

  74. Romanowska M et al (2010) Activation of PPARbeta/delta causes a psoriasis-like skin disease in vivo. PLoS One 5(3):e9701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hack K et al (2012) Skin-targeted inhibition of PPAR beta/delta by selective antagonists to treat PPAR beta/delta-mediated psoriasis-like skin disease in vivo. PLoS One 7(5):e37097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kippenberger S et al (2001) Activators of peroxisome proliferator-activated receptors protect human skin from ultraviolet-B-light-induced inflammation. J Invest Dermatol 117(6):1430–1436

    Article  CAS  PubMed  Google Scholar 

  77. Thuillier P et al (2000) Activators of peroxisome proliferator-activated receptor-alpha partially inhibit mouse skin tumor promotion. Mol Carcinog 29(3):134–142

    Article  CAS  PubMed  Google Scholar 

  78. Kim DJ et al (2004) Peroxisome proliferator-activated receptor beta (delta)-dependent regulation of ubiquitin C expression contributes to attenuation of skin carcinogenesis. J Biol Chem 279(22):23719–23727

    Article  CAS  PubMed  Google Scholar 

  79. Kim DJ et al (2005) Peroxisome proliferator-activated receptor-beta/delta inhibits epidermal cell proliferation by down-regulation of kinase activity. J Biol Chem 280(10):9519–9527

    Article  CAS  PubMed  Google Scholar 

  80. Chen D, Auborn K (1999) Fish oil constituent docosahexa-enoic acid selectively inhibits growth of human papillomavirus immortalized keratinocytes. Carcinogenesis 20(2):249–254

    Article  CAS  PubMed  Google Scholar 

  81. He G et al (2005) The effect of PPARgamma ligands on UV- or chemically-induced carcinogenesis in mouse skin. Mol Carcinog 43(4):198–206

    Article  CAS  PubMed  Google Scholar 

  82. Nicol CJ et al (2004) PPARgamma influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis 25(9):1747–1755

    Article  CAS  PubMed  Google Scholar 

  83. Grabacka M et al (2006) Peroxisome proliferator-activated receptor alpha activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt. Clin Cancer Res 12(10):3028–3036

    Article  CAS  PubMed  Google Scholar 

  84. Liu Y et al (2006) Growth inhibition and differentiation induced by peroxisome proliferator activated receptor gamma ligand rosiglitazone in human melanoma cell line A375. Med Oncol 23(3):393–402

    Article  PubMed  Google Scholar 

  85. Smith AG et al (2009) PPARgamma agonists attenuate proliferation and modulate Wnt/beta-catenin signalling in melanoma cells. Int J Biochem Cell Biol 41(4):844–852

    Article  CAS  PubMed  Google Scholar 

  86. Grabacka M et al (2004) Inhibition of melanoma metastases by fenofibrate. Arch Dermatol Res 296(2):54–58

    Article  CAS  PubMed  Google Scholar 

  87. Hanley K et al (1999) Fetal epidermal differentiation and barrier development In vivo is accelerated by nuclear hormone receptor activators. J Invest Dermatol 113(5):788–795

    Article  CAS  PubMed  Google Scholar 

  88. Hanley K et al (2000) Oxysterols induce differentiation in human keratinocytes and increase Ap-1-dependent involucrin transcription. J Invest Dermatol 114(3):545–553

    Article  CAS  PubMed  Google Scholar 

  89. Russell LE et al (2007) Characterization of liver X receptor expression and function in human skin and the pilosebaceous unit. Exp Dermatol 16(10):844–852

    Article  CAS  PubMed  Google Scholar 

  90. Komuves LG et al (2002) Oxysterol stimulation of epidermal differentiation is mediated by liver X receptor-beta in murine epidermis. J Invest Dermatol 118(1):25–34

    Article  CAS  PubMed  Google Scholar 

  91. Man MQ et al (2006) Basis for improved permeability barrier homeostasis induced by PPAR and LXR activators: liposensors stimulate lipid synthesis, lamellar body secretion, and post-secretory lipid processing. J Invest Dermatol 126(2):386–392

    Article  CAS  PubMed  Google Scholar 

  92. Chang KC et al (2008) Liver X receptor is a therapeutic target for photoaging and chronological skin aging. Mol Endocrinol 22(11):2407–2419

    Article  CAS  PubMed  Google Scholar 

  93. Fowler AJ et al (2003) Liver X receptor activators display anti-inflammatory activity in irritant and allergic contact dermatitis models: liver-X-receptor-specific inhibition of inflammation and primary cytokine production. J Invest Dermatol 120(2):246–255

    Article  CAS  PubMed  Google Scholar 

  94. Cork MJ et al (2006) New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol 118(1):3–21 (Quiz 22–3)

  95. Ong PY et al (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160

    Article  CAS  PubMed  Google Scholar 

  96. Proksch E, Jensen JM, Elias PM (2003) Skin lipids and epidermal differentiation in atopic dermatitis. Clin Dermatol 21(2):134–144

    Article  PubMed  Google Scholar 

  97. Sugarman JL et al (2003) The objective severity assessment of atopic dermatitis score: an objective measure using permeability barrier function and stratum corneum hydration with computer-assisted estimates for extent of disease. Arch Dermatol 139(11):1417–1422

    Article  PubMed  Google Scholar 

  98. Hatano Y et al (2010) Murine atopic dermatitis responds to peroxisome proliferator-activated receptors alpha and beta/delta (but not gamma) and liver X receptor activators. J Allergy Clin Immunol 125(1):160–169 (e1–5)

  99. Zhang W et al (2014) Liver X receptor activation induces apoptosis of melanoma cell through caspase pathway. Cancer Cell Int 14(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Pencheva N et al (2014) Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation. Cell 156(5):986–1001

    Article  CAS  PubMed  Google Scholar 

  101. Wang Z et al (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423(6939):555–560

    Article  CAS  PubMed  Google Scholar 

  102. Safe S et al (2016) Nuclear receptor 4A (NR4A) family—orphans no more. J Steroid Biochem Mol Biol 157:48–60

    Article  CAS  PubMed  Google Scholar 

  103. Mohan HM et al (2012) Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clin Cancer Res 18(12):3223–3228

    Article  CAS  PubMed  Google Scholar 

  104. Ranhotra HS (2015) The NR4A orphan nuclear receptors: mediators in metabolism and diseases. J Recept Signal Transduct Res 35(2):184–188

    Article  CAS  PubMed  Google Scholar 

  105. Newton RA et al (2005) Activation of the cAMP pathway by variant human MC1R alleles expressed in HEK and in melanoma cells. Peptides 26(10):1818–1824

    Article  CAS  PubMed  Google Scholar 

  106. Smith AG et al (2008) Melanocortin-1 receptor signaling markedly induces the expression of the NR4A nuclear receptor subgroup in melanocytic cells. J Biol Chem 283(18):12564–12570

    Article  CAS  PubMed  Google Scholar 

  107. de Leseleuc L, Denis F (2006) Nur77 forms novel nuclear structures upon DNA damage that cause transcriptional arrest. Exp Cell Res 312(9):1507–1513

    Article  PubMed  CAS  Google Scholar 

  108. Jagirdar K et al (2013) The NR4A2 nuclear receptor is recruited to novel nuclear foci in response to UV irradiation and participates in nucleotide excision repair. PLoS One 8(11):e78075. doi:10.1371/journal.pone.0078075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Malewicz M et al (2011) Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair. Genes Dev 25(19):2031–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Malewicz M, Perlmann T (2014) Function of transcription factors at DNA lesions in DNA repair. Exp Cell Res 329(1):94–100

    Article  CAS  PubMed  Google Scholar 

  111. Inamoto T et al (2008) 1,1-Bis(3′-indolyl)-1-(p-chlorophenyl)methane activates the orphan nuclear receptor Nurr1 and inhibits bladder cancer growth. Mol Cancer Ther 7(12):3825–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Inamoto T et al (2010) Cytoplasmic mislocalization of the orphan nuclear receptor Nurr1 is a prognostic factor in bladder cancer. Cancer 116(2):340–346

    Article  PubMed  Google Scholar 

  113. Li X, Lee SO, Safe S (2012) Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3′-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. Biochem Pharmacol 83(10):1445–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Boakye CH et al (2013) Chemoprevention of skin cancer with 1,1-bis (3′-indolyl)-1-(aromatic) methane analog through induction of the orphan nuclear receptor, NR4A2 (Nurr1). PLoS One 8(8):e69519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. O’Kane M et al (2008) Increased expression of the orphan nuclear receptor NURR1 in psoriasis and modulation following TNF-alpha inhibition. J Invest Dermatol 128(2):300–310

    Article  PubMed  CAS  Google Scholar 

  116. Niu G et al (2015) Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin beta4. FASEB J 29(1):131–140

    Article  CAS  PubMed  Google Scholar 

  117. Palumbo-Zerr K et al (2015) Orphan nuclear receptor NR4A1 regulates transforming growth factor-beta signaling and fibrosis. Nat Med 21(2):150–158

    Article  CAS  PubMed  Google Scholar 

  118. Smith AG et al (2011) Regulation of NR4A nuclear receptor expression by oncogenic BRAF in melanoma cells. Pigment Cell Melanoma Res 24(3):551–563

    Article  CAS  PubMed  Google Scholar 

  119. Wong DJ, Ribas A (2016) Targeted therapy for melanoma. Cancer Treat Res 167:251–262

    Article  PubMed  Google Scholar 

  120. Johannessen CM et al (2013) A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504(7478):138–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jetten AM (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 7:e003

    PubMed  PubMed Central  Google Scholar 

  122. Slominski A et al (2005) On the role of melatonin in skin physiology and pathology. Endocrine 27(2):137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Steinmayr M et al (1998) Staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci USA 95(7):3960–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhu Y et al (2006) RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 25(20):2901–2908

    Article  CAS  PubMed  Google Scholar 

  125. Dai J et al (2013) The retinoid-related orphan receptor RORalpha promotes keratinocyte differentiation via FOXN1. PLoS One 8(7):e70392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hanyu O et al (2012) Cholesterol sulfate induces expression of the skin barrier protein filaggrin in normal human epidermal keratinocytes through induction of RORalpha. Biochem Biophys Res Commun 428(1):99–104

    Article  CAS  PubMed  Google Scholar 

  127. Huh JR, Littman DR (2012) Small molecule inhibitors of RORgammat: targeting Th17 cells and other applications. Eur J Immunol 42(9):2232–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kallen JA et al (2002) X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Structure 10(12):1697–1707

    Article  CAS  PubMed  Google Scholar 

  129. Solt LA, Burris TP (2012) Action of RORs and their ligands in (patho)physiology. Trends Endocrinol Metab 23(12):619–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marciano DP et al (2014) The therapeutic potential of nuclear receptor modulators for treatment of metabolic disorders: PPARgamma, RORs, and Rev-erbs. Cell Metab 19(2):193–208

    Article  CAS  PubMed  Google Scholar 

  131. Slominski AT et al (2014) The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions. J Steroid Biochem Mol Biol 144 Pt A:28–39

  132. Skepner J et al (2014) Pharmacologic inhibition of RORgammat regulates Th17 signature gene expression and suppresses cutaneous inflammation in vivo. J Immunol 192(6):2564–2575

    Article  CAS  PubMed  Google Scholar 

  133. Keijsers RR et al (2014) In vivo induction of cutaneous inflammation results in the accumulation of extracellular trap-forming neutrophils expressing RORgammat and IL-17. J Invest Dermatol 134(5):1276–1284

    Article  CAS  PubMed  Google Scholar 

  134. Wang H, LeCluyse EL (2003) Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes. Clin Pharmacokinet 42(15):1331–1357

    Article  CAS  PubMed  Google Scholar 

  135. Elentner A et al (2015) Skin response to a carcinogen involves the xenobiotic receptor pregnane X receptor. Exp Dermatol

  136. Beyer C et al (2013) Activation of pregnane X receptor inhibits experimental dermal fibrosis. Ann Rheum Dis 72(4):621–625

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron G. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, K., Smith, A.G. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes. Cell. Mol. Life Sci. 73, 3789–3800 (2016). https://doi.org/10.1007/s00018-016-2329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2329-4

Keywords

Navigation