Skip to main content

Advertisement

Log in

HSP70 regulates the function of mitotic centrosomes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

To establish a functional bipolar mitotic spindle, the centrosome expands and matures, acquiring enhanced activities for microtubule (MT) nucleation and assembly at the onset of mitosis. However, the regulatory mechanisms of centrosome maturation and MT assembly from the matured centrosome are largely unknown. In this study, we showed that heat shock protein (HSP) 70 considerably accumulates at the mitotic centrosome during prometaphase to metaphase and is required for bipolar spindle assembly. Inhibition or depletion of HSP70 impaired the function of mitotic centrosome and disrupted MT nucleation and polymerization from the spindle pole, and may thus result in formation of abnormal mitotic spindles. In addition, HSP70 may associate with NEDD1 and γ-tubulin, two pericentriolar material (PCM) components essential for centrosome maturation and MT nucleation. Loss of HSP70 function disrupted the interaction between NEDD1 and γ-tubulin, and reduced their accumulation at the mitotic centrosome. Our results thus demonstrate a role for HSP70 in regulating centrosome integrity during mitosis, and indicate that HSP70 is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chavali PL, Putz M, Gergely F (2014) Small organelle, big responsibility: the role of centrosomes in development and disease. Philosophical transactions of the Royal Society of London Series B, Biological sciences. doi:10.1098/rstb.2013.0468

    PubMed  PubMed Central  Google Scholar 

  2. Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13(10):1154–1160. doi:10.1038/ncb2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Colello D, Reverte CG, Ward R, Jones CW, Magidson V, Khodjakov A, LaFlamme SE (2010) Androgen and Src signaling regulate centrosome activity. J Cell Sci 123(Pt 12):2094–2102. doi:10.1242/jcs.057505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Colello D, Mathew S, Ward R, Pumiglia K, LaFlamme SE (2012) Integrins regulate microtubule nucleating activity of centrosome through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling. J Biol Chem 287(4):2520–2530. doi:10.1074/jbc.M111.254128

    Article  CAS  PubMed  Google Scholar 

  5. Mennella V, Agard DA, Huang B, Pelletier L (2014) Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol 24(3):188–197. doi:10.1016/j.tcb.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  6. Kimura M, Yoshioka T, Saio M, Banno Y, Nagaoka H, Okano Y (2013) Mitotic catastrophe and cell death induced by depletion of centrosomal proteins. Cell Death Dis 4:e603. doi:10.1038/cddis.2013.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maiato H, Logarinho E (2014) Mitotic spindle multipolarity without centrosome amplification. Nat Cell Biol 16(5):386–394

    Article  CAS  PubMed  Google Scholar 

  8. Teixido-Travesa N, Roig J, Luders J (2012) The where, when and how of microtubule nucleation—one ring to rule them all. J Cell Sci 125(Pt 19):4445–4456. doi:10.1242/jcs.106971

    Article  CAS  PubMed  Google Scholar 

  9. Luders J, Patel UK, Stearns T (2006) GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat Cell Biol 8(2):137–147. doi:10.1038/ncb1349

    Article  PubMed  Google Scholar 

  10. Kollman JM, Merdes A, Mourey L, Agard DA (2011) Microtubule nucleation by gamma-tubulin complexes. Nat Rev Mol Cell Biol 12(11):709–721. doi:10.1038/nrm3209

    Article  CAS  PubMed  Google Scholar 

  11. Petry S, Vale RD (2015) Microtubule nucleation at the centrosome and beyond. Nat Cell Biol 17(9):1089–1093. doi:10.1038/ncb3220

    Article  CAS  PubMed  Google Scholar 

  12. Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS, Rines DR, Sharp DJ (2007) Human Cep192 is required for mitotic centrosome and spindle assembly. Curr Biol CB 17(22):1960–1966. doi:10.1016/j.cub.2007.10.019

    Article  CAS  PubMed  Google Scholar 

  13. Katsetos CD, Draberova E, Smejkalova B, Reddy G, Bertrand L, de Chadarevian JP, Legido A, Nissanov J, Baas PW, Draber P (2007) Class III beta-tubulin and gamma-tubulin are co-expressed and form complexes in human glioblastoma cells. Neurochem Res 32(8):1387–1398. doi:10.1007/s11064-007-9321-1

    Article  CAS  PubMed  Google Scholar 

  14. Katsetos CD, Draberova E, Legido A, Draber P (2009) Tubulin targets in the pathobiology and therapy of glioblastoma multiforme,II. gamma-Tubulin. J Cell Physiol 221(3):514–520. doi:10.1002/jcp.21884

    Article  CAS  PubMed  Google Scholar 

  15. Caracciolo V, D’Agostino L, Draberova E, Sladkova V, Crozier-Fitzgerald C, Agamanolis DP, de Chadarevian JP, Legido A, Giordano A, Draber P, Katsetos CD (2010) Differential expression and cellular distribution of gamma-tubulin and betaIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J Cell Physiol 223(2):519–529. doi:10.1002/jcp.22077

    CAS  PubMed  Google Scholar 

  16. Maounis NF, Draberova E, Mahera E, Chorti M, Caracciolo V, Sulimenko T, Riga D, Trakas N, Emmanouilidou A, Giordano A, Draber P, Katsetos CD (2012) Overexpression of gamma-tubulin in non-small cell lung cancer. Histol Histopathol 27(9):1183–1194

    CAS  PubMed  Google Scholar 

  17. Liang P, MacRae TH (1997) Molecular chaperones and the cytoskeleton. J Cell Sci 110(Pt 13):1431–1440

    CAS  PubMed  Google Scholar 

  18. Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu Y, Orton K, Villella A, Garza D, Vidal M, Ge H, Morimoto RI (2014) A chaperone subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Reports 9(3):1135–1150. doi:10.1016/j.celrep.2014.09.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Treweek TM, Meehan S, Ecroyd H, Carver JA (2015) Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci CMLS 72(3):429–451. doi:10.1007/s00018-014-1754-5

    Article  CAS  PubMed  Google Scholar 

  20. Makhnevych T, Wong P, Pogoutse O, Vizeacoumar FJ, Greenblatt JF, Emili A, Houry WA (2012) Hsp110 is required for spindle length control. J Cell Biol 198(4):623–636. doi:10.1083/jcb.201111105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almeida-Souza L, Asselbergh B, De Winter V, Goethals S, Timmerman V, Janssens S (2013) HSPB1 facilitates the formation of non-centrosomal microtubules. PLoS One 8(6):e66541. doi:10.1371/journal.pone.0066541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khalouei S, Chow AM, Brown IR (2014) Stress-induced localization of HSPA6 (HSP70B’) and HSPA1A (HSP70-1) proteins to centrioles in human neuronal cells. Cell Stress Chaperones 19(3):321–327. doi:10.1007/s12192-013-0459-2

    Article  CAS  PubMed  Google Scholar 

  23. Almeida-Souza L, Asselbergh B, d’Ydewalle C, Moonens K, Goethals S, de Winter V, Azmi A, Irobi J, Timmermans JP, Gevaert K, Remaut H, Van Den Bosch L, Timmerman V, Janssens S (2011) Small heat-shock protein HSPB1 mutants stabilize microtubules in Charcot-Marie-Tooth neuropathy. J Neurosci Off J Soc Neurosci 31(43):15320–15328. doi:10.1523/jneurosci.3266-11.2011

    Article  CAS  Google Scholar 

  24. Ferretti R, Palumbo V, Di Savino A, Velasco S, Sbroggio M, Sportoletti P, Micale L, Turco E, Silengo L, Palumbo G, Hirsch E, Teruya-Feldstein J, Bonaccorsi S, Pandolfi PP, Gatti M, Tarone G, Brancaccio M (2010) Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev Cell 18(3):486–495. doi:10.1016/j.devcel.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  25. Hut HM, Kampinga HH, Sibon OC (2005) Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities. Mol Biol Cell 16(8):3776–3785. doi:10.1091/mbc.E05-01-0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scieglinska D, Piglowski W, Mazurek A, Malusecka E, Zebracka J, Filipczak P, Krawczyk Z (2008) The HspA2 protein localizes in nucleoli and centrosomes of heat shocked cancer cells. J Cell Biochem 104(6):2193–2206. doi:10.1002/jcb.21778

    Article  CAS  PubMed  Google Scholar 

  27. Chen YJ, Lai KC, Kuo HH, Chow LP, Yih LH, Lee TC (2014) HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Arch Toxicol 88(9):1711–1723. doi:10.1007/s00204-014-1222-x

    Article  CAS  PubMed  Google Scholar 

  28. Stanbridge EJ, Flandermeyer RR, Daniels DW, Nelson-Rees WA (1981) Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somatic cell Gene 7(6):699–712

    Article  CAS  Google Scholar 

  29. Yih LH, Wu YC, Hsu NC, Kuo HH (2012) Arsenic trioxide induces abnormal mitotic spindles through a PIP4KIIgamma/Rho pathway. Toxicol Sci Off J Soc Toxicol 128(1):115–125. doi:10.1093/toxsci/kfs129

    Article  CAS  Google Scholar 

  30. Yih LH, Hsu NC, Kuo HH, Wu YC (2012) Inhibition of the heat shock response by PI103 enhances the cytotoxicity of arsenic trioxide. Toxicol Sci Off J Soc Toxicol 128(1):126–136

    Article  CAS  Google Scholar 

  31. Lee K, Rhee K (2011) PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J Cell Biol 195(7):1093–1101. doi:10.1083/jcb.201106093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luders J (2012) The amorphous pericentriolar cloud takes shape. Nat Cell Biol 14(11):1126–1128. doi:10.1038/ncb2617

    Article  PubMed  Google Scholar 

  33. Piehl M, Tulu US, Wadsworth P, Cassimeris L (2004) Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. Proc Natl Acad Sci USA 101(6):1584–1588. doi:10.1073/pnas.0308205100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leu JI, Pimkina J, Frank A, Murphy ME, George DL (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36(1):15–27. doi:10.1016/j.molcel.2009.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rieder CL (1981) The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma 84(1):145–158

    Article  CAS  PubMed  Google Scholar 

  36. Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38(10):507–514. doi:10.1016/j.tibs.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  37. Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I, Zylicz A, Knudsen J, Sandhoff K, Arenz C, Kinnunen PK, Nylandsted J, Jaattela M (2010) Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature 463(7280):549–553. doi:10.1038/nature08710

    Article  CAS  PubMed  Google Scholar 

  38. Kose S, Furuta M, Imamoto N (2012) Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage. Cell 149(3):578–589. doi:10.1016/j.cell.2012.02.058

    Article  CAS  PubMed  Google Scholar 

  39. Brown CR, Hong-Brown LQ, Doxsey SJ, Welch WJ (1996) Molecular chaperones and the centrosome. A role for HSP 73 in centrosomal repair following heat shock treatment. J Biol Chem 271(2):833–840

    Article  CAS  PubMed  Google Scholar 

  40. Vertii A, Zimmerman W, Ivshina M, Doxsey S (2015) Centrosome-intrinsic mechanisms modulate centrosome integrity during fever. Mol Biol Cell 26(19):3451–3463. doi:10.1091/mbc.E15-03-0158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mahen R, Venkitaraman AR (2012) Pattern formation in centrosome assembly. Curr Opin Cell Biol 24(1):14–23. doi:10.1016/j.ceb.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  42. Murphy ME (2013) The HSP70 family and cancer. Carcinogenesis 34(6):1181–1188. doi:10.1093/carcin/bgt111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Regan L, Sampson J, Richards MW, Knebel A, Roth D, Hood FE, Straube A, Royle SJ, Bayliss R, Fry AM (2015) Hsp72 is targeted to the mitotic spindle by Nek6 to promote K-fiber assembly and mitotic progression. J Cell Biol 209(3):349–358. doi:10.1083/jcb.201409151

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fry AM, O’Regan L, Sabir SR, Bayliss R (2012) Cell cycle regulation by the NEK family of protein kinases. J Cell Sci 125(Pt 19):4423–4433. doi:10.1242/jcs.111195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Didier C, Merdes A, Gairin JE, Jabrane-Ferrat N (2008) Inhibition of proteasome activity impairs centrosome-dependent microtubule nucleation and organization. Mol Biol Cell 19(3):1220–1229. doi:10.1091/mbc.E06-12-1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muller P, Ruckova E, Halada P, Coates PJ, Hrstka R, Lane DP, Vojtesek B (2013) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32(25):3101–3110. doi:10.1038/onc.2012.314

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Amick J, Chakravarti R, Santarriaga S, Schlanger S, McGlone C, Dare M, Nix JC, Scaglione KM, Stuehr DJ, Misra S, Page RC (2015) A bipartite interaction between Hsp70 and CHIP regulates ubiquitination of chaperoned client proteins. Structure (London, England : 1993) 23 (3):472–482. doi:10.1016/j.str.2015.01.003

  48. McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8(4):303–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH (2015) The role of heat shock proteins in cancer. Cancer Lett 360(2):114–118. doi:10.1016/j.canlet.2015.02.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Core Facility of the Institute of Cellular and Organismic Biology, Academia Sinica, for their assistance with confocal microscopy and image analysis. This work was supported by grants from Academia Sinica and the Ministry of Science and Technology (NSC 102-2320-B-001-023-MY3), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Huei Yih.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

C.-T. Fang and H.-H. Kuo contribute equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, CT., Kuo, HH., Pan, T.S. et al. HSP70 regulates the function of mitotic centrosomes. Cell. Mol. Life Sci. 73, 3949–3960 (2016). https://doi.org/10.1007/s00018-016-2236-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2236-8

Keywords

Navigation