Skip to main content

Advertisement

Log in

Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Lon protease is a nuclear DNA-encoded mitochondrial enzyme highly conserved throughout evolution, involved in the degradation of damaged and oxidized proteins of the mitochondrial matrix, in the correct folding of proteins imported in mitochondria, and in the maintenance of mitochondrial DNA. Lon expression is induced by various stimuli, including hypoxia and reactive oxygen species, and provides protection against cell stress. Lon down-regulation is associated with ageing and with cell senescence, while up-regulation is observed in tumour cells, and is correlated with a more aggressive phenotype of cancer. Lon up-regulation contributes to metabolic reprogramming observed in cancer, favours the switch from a respiratory to a glycolytic metabolism, helping cancer cell survival in the tumour microenvironment, and contributes to epithelial to mesenchymal transition. Silencing of Lon, or pharmacological inhibition of its activity, causes cell death in various cancer cells. Thus, Lon can be included in the growing class of proteins that are not responsible for oncogenic transformation, but that are essential for survival and proliferation of cancer cells, and that can be considered as a new target for development of anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAA+:

ATPase associated with diverse cellular activities

Aco2:

Aconitase 2

ALAS-1:

5-aminolevulinic acid synthase 1

AOX:

acyl-CoA oxidase

cART:

Combined antiretroviral therapy

C/EBP:

CCAAT-enhancer-binding protein

CBS:

Cystathionine β-synthase

CDDO-Me:

2-cyano-3, 12-dioxoo- leana-1,9(11)-dien-28-oic methyl ester

CDDO:

2-cyano-3, 12-dioxoo- leana-1,9(11)-dien-28-oic acid

CHOP:

C/EBP homology protein

Clp:

Caseinolytic protease

ClpX:

Caseinolytic protease X

cLβL:

Clasto-lactacystin β-lactone

CODAS:

Cerebral, ocular, dental, auricular and skeletal anomalies

COX:

Cytochrome c oxidase

COX4-1:

Cytochrome c oxidase, subunit 4, isoform 1

CR:

Caloric restriction

EMT:

Epithelial–mesenchymal transition

ER:

Endoplasmic reticulum

ERK1:

Extracellular-signal-regulated kinase 1

ERK2:

Extracellular-signal-regulated kinase 2

FITC:

Fluorescein isothiocyanate

GLS-1:

Glutaminase C

HIF1-α:

Hypoxia inducible factor 1 α

HIV:

Human immunodeficiency virus

JNK:

c-Jun N-terminal kinase

LONP1:

Lon peptidase 1, mitochondrial

Lyf-1:

Lymphoid transcription factor

m-AAA:

Matrix-ATPase associated with diverse cellular activities

MELAS:

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes

MERRF:

Myoclonic epilepsy with ragged-red fibre

MMP-2:

Matrix metalloproteinase-2

MnSOD:

Manganese superoxide dismutase

mtDNA:

Mitochondrial DNA

MTS:

Mitochondrial-targeting sequence

NDFUS3:

NADH dehydrogenase (ubiquinone) Fe-S protein 3

NDFUS7:

NADH dehydrogenase (ubiquinone) Fe-S protein 7

NDFUS8:

NADH dehydrogenase (ubiquinone) Fe-S protein 8

NDUFB6:

NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6

NDUFV1:

NADH dehydrogenase (ubiquinone) flavoprotein 1

NDUFV2:

NADH dehydrogenase (ubiquinone) flavoprotein 2

NF-kB:

Nuclear factor kappa-B

Nkx2-5:

NK2 homeobox 5

NRF1:

Nuclear respiratory factor 1

NRF2:

Nuclear respiratory factor 2

NRTI:

Nucleotide analogue reverse transcriptase inhibitor

OA:

Obtusilactone A

OCR:

Oxygen consumption rate

OXPHOS:

Oxidative phosphorylation

PGC1 α:

Peroxisome proliferator-activated receptor γ coactivator 1 α

Pim1:

Proteolysis into mitochondria 1

PMP70:

70-kDa peroxisomal membrane protein

PMSF:

Phenylmethanesulphonylfluoride

POLDIP2:

Polymerase (DNA-directed) delta interacting protein 2

PRSS15:

Serine protease 15

PI:

Protease inhibitor

PTS1:

Peroxisomal targeting sequence type-1

ROS:

Reactive oxygen species

SDH:

Succinate dehydrogenase

SDH5:

Succinate dehydrogenase 5

SDHA:

Succinate dehydrogenase complex, subunit A

SIRT1:

Sirtuin 1

SIRT3:

Sirtuin 3

StAR:

Steroidogenic acute regulatory protein

TCA cycle:

Tricarboxylic acid cycle

TFAM:

Mitochondrial transcription factor A

Tysnd1:

Trypsin domain containing 1

VHL:

Von Hippel Lindau tumour suppressor

References

  1. Truscott KN, Lowth BR, Strack PR, Dougan DA (2010) Diverse functions of mitochondrial AAA+ proteins: protein activation, disaggregation, and degradation. Biochem Cell Biol Biochimie et biologie cellulaire 88(1):97–108. doi:10.1139/o09-167

    Article  CAS  PubMed  Google Scholar 

  2. Swamy KH, Goldberg AL (1981) Escherichia coli contains eight soluble proteolytic activities, one being ATP dependent. Nature 292(5824):652–654

    Article  CAS  PubMed  Google Scholar 

  3. Wang N, Gottesman S, Willingham MC, Gottesman MM, Maurizi MR (1993) A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci USA 90(23):11247–11251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Amerik A, Petukhova GV, Grigorenko VG, Lykov IP, Yarovoi SV, Lipkin VM, Gorbalenya AE (1994) Cloning and sequence analysis of cDNA for a human homolog of eubacterial ATP-dependent Lon proteases. FEBS Lett 340(1–2):25–28

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki CK, Suda K, Wang N, Schatz G (1994) Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264(5156):273–276

    Article  CAS  PubMed  Google Scholar 

  6. Howard-Flanders P, Simson E, Theriot L (1964) The excision of thymine dimers from DNA, filament formation and sensitivity to ultraviolet light in Escherichia coli K-12. Mutat Res 106:219–226

    Article  CAS  PubMed  Google Scholar 

  7. Murakami K, Voellmy R, Goldberg AL (1979) Protein degradation is stimulated by ATP in extracts of Escherichia coli. J Biol Chem 254(17):8194–8200

    CAS  PubMed  Google Scholar 

  8. Charette MF, Henderson GW, Markovitz A (1981) ATP hydrolysis-dependent protease activity of the lon (capR) protein of Escherichia coli K-12. Proc Natl Acad Sci USA 78(8):4728–4732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chung CH, Goldberg AL (1981) The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci USA 78(8):4931–4935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Van Dyck L, Langer T (1999) ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae. Cell Mol Life Sci CMLS 56(9–10):825–842

    Article  PubMed  Google Scholar 

  11. Rep M, Grivell LA (1996) The role of protein degradation in mitochondrial function and biogenesis. Curr Genet 30(5):367–380

    Article  CAS  PubMed  Google Scholar 

  12. Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11(7):815–823

    Article  CAS  PubMed  Google Scholar 

  13. Jonas K, Liu J, Chien P, Laub MT (2013) Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA. Cell 154(3):623–636. doi:10.1016/j.cell.2013.06.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Fu GK, Smith MJ, Markovitz DM (1997) Bacterial protease Lon is a site-specific DNA-binding protein. J Biol Chem 272(1):534–538

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki CK, Suda K, Wang N, Schatz G (1994) Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264(5161):891

    Article  CAS  PubMed  Google Scholar 

  16. Van Dyck L, Pearce DA, Sherman F (1994) PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem 269(1):238–242

    PubMed  Google Scholar 

  17. Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK (2012) Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim Biophys Acta 1823(1):56–66. doi:10.1016/j.bbamcr.2011.11.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Adam C, Picard M, Dequard-Chablat M, Sellem CH, Hermann-Le Denmat S, Contamine V (2012) Biological roles of the Podospora anserina mitochondrial Lon protease and the importance of its N-domain. PLoS One 7(5):e38138. doi:10.1371/journal.pone.0038138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rigas S, Daras G, Laxa M, Marathias N, Fasseas C, Sweetlove LJ, Hatzopoulos P (2009) Role of Lon1 protease in post-germinative growth and maintenance of mitochondrial function in Arabidopsis thaliana. New Phytol 181(3):588–600. doi:10.1111/j.1469-8137.2008.02701.x

    Article  CAS  PubMed  Google Scholar 

  20. Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A (2006) Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci 15(8):1815–1828. doi:10.1110/ps.052069306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Duman RE, Lowe J (2010) Crystal structures of Bacillus subtilis Lon protease. J Mol Biol 401(4):653–670. doi:10.1016/j.jmb.2010.06.030

    Article  CAS  PubMed  Google Scholar 

  22. Park SC, Jia B, Yang JK, Van DL, Shao YG, Han SW, Jeon YJ, Chung CH, Cheong GW (2006) Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Mol Cells 21(1):129–134

    CAS  PubMed  Google Scholar 

  23. Vieux EF, Wohlever ML, Chen JZ, Sauer RT, Baker TA (2013) Distinct quaternary structures of the AAA+ Lon protease control substrate degradation. Proc Natl Acad Sci USA 110(22):E2002–E2008. doi:10.1073/pnas.1307066110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Cha SS, An YJ, Lee CR, Lee HS, Kim YG, Kim SJ, Kwon KK, De Donatis GM, Lee JH, Maurizi MR, Kang SG (2010) Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J 29(20):3520–3530. doi:10.1038/emboj.2010.226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Botos I, Melnikov EE, Cherry S, Tropea JE, Khalatova AG, Rasulova F, Dauter Z, Maurizi MR, Rotanova TV, Wlodawer A, Gustchina A (2004) The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J Biol Chem 279(9):8140–8148. doi:10.1074/jbc.M312243200

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt R, Decatur AL, Rather PN, Moran CP Jr, Losick R (1994) Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J Bacteriol 176(21):6528–6537

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Breidenstein EB, Janot L, Strehmel J, Fernandez L, Taylor PK, Kukavica-Ibrulj I, Gellatly SL, Levesque RC, Overhage J, Hancock RE (2012) The Lon protease is essential for full virulence in Pseudomonas aeruginosa. PLoS One 7(11):e49123. doi:10.1371/journal.pone.0049123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Robertson GT, Kovach ME, Allen CA, Ficht TA, Roop RM 2nd (2000) The Brucella abortus Lon functions as a generalized stress response protease and is required for wild-type virulence in BALB/c mice. Mol Microbiol 35(3):577–588

    Article  CAS  PubMed  Google Scholar 

  29. Coleman JL, Katona LI, Kuhlow C, Toledo A, Okan NA, Tokarz R, Benach JL (2009) Evidence that two ATP-dependent (Lon) proteases in Borrelia burgdorferi serve different functions. PLoS Pathog 5(11):e1000676. doi:10.1371/journal.ppat.1000676

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A (2004) Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J Struct Biol 146(1–2):113–122. doi:10.1016/j.jsb.2003.09.003

    Article  CAS  PubMed  Google Scholar 

  31. Li M, Gustchina A, Rasulova FS, Melnikov EE, Maurizi MR, Rotanova TV, Dauter Z, Wlodawer A (2010) Structure of the N-terminal fragment of Escherichia coli Lon protease. Acta Crystallogr D Biol Crystallogr 66(Pt 8):865–873. doi:10.1107/S0907444910019554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Botos I, Melnikov EE, Cherry S, Kozlov S, Makhovskaya OV, Tropea JE, Gustchina A, Rotanova TV, Wlodawer A (2005) Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus lon reveals the conformational variability in the active sites of lon proteases. J Mol Biol 351(1):144–157. doi:10.1016/j.jmb.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  33. Im YJ, Na Y, Kang GB, Rho SH, Kim MK, Lee JH, Chung CH, Eom SH (2004) The active site of a lon protease from Methanococcus jannaschii distinctly differs from the canonical catalytic Dyad of Lon proteases. J Biol Chem 279(51):53451–53457. doi:10.1074/jbc.M410437200

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Nafria J, Ondrovicova G, Blagova E, Levdikov VM, Bauer JA, Suzuki CK, Kutejova E, Wilkinson AJ, Wilson KS (2010) Structure of the catalytic domain of the human mitochondrial Lon protease: proposed relation of oligomer formation and activity. Protein Sci 19(5):987–999. doi:10.1002/pro.376

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Chen YD, Chang YY, Wu SH, Hsu CH (2013) Crystallization and preliminary X-ray diffraction analysis of the alpha subdomain of Lon protease from Brevibacillus thermoruber. Acta Crystallogr Sect F Struct Biol Cryst Commun 69(Pt 8):899–901. doi:10.1107/S1744309113017958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wagner I, van Dyck L, Savel’ev AS, Neupert W, Langer T (1997) Autocatalytic processing of the ATP-dependent PIM1 protease: crucial function of a pro-region for sorting to mitochondria. EMBO J 16(24):7317–7325. doi:10.1093/emboj/16.24.7317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. van Dyck L, Neupert W, Langer T (1998) The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev 12(10):1515–1524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Teichmann U, van Dyck L, Guiard B, Fischer H, Glockshuber R, Neupert W, Langer T (1996) Substitution of PIM1 protease in mitochondria by Escherichia coli Lon protease. J Biol Chem 271(17):10137–10142

    Article  CAS  PubMed  Google Scholar 

  39. Stahlberg H, Kutejova E, Suda K, Wolpensinger B, Lustig A, Schatz G, Engel A, Suzuki CK (1999) Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc Natl Acad Sci USA 96(12):6787–6790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Major T, von Janowsky B, Ruppert T, Mogk A, Voos W (2006) Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease pim1. Mol Cell Biol 26(3):762–776. doi:10.1128/MCB.26.3.762-776.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bayot A, Gareil M, Rogowska-Wrzesinska A, Roepstorff P, Friguet B, Bulteau AL (2010) Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. J Biol Chem 285(15):11445–11457. doi:10.1074/jbc.M109.065425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Okumoto K, Kametani Y, Fujiki Y (2011) Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal lon protease (PsLon), cooperatively regulate fatty acid beta-oxidation in peroxisomal matrix. J Biol Chem 286(52):44367–44379. doi:10.1074/jbc.M111.285197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279(1):421–428. doi:10.1074/jbc.M305623200

    Article  CAS  PubMed  Google Scholar 

  44. Bartoszewska M, Williams C, Kikhney A, Opalinski L, van Roermund CW, de Boer R, Veenhuis M, van der Klei IJ (2012) Peroxisomal proteostasis involves a Lon family protein that functions as protease and chaperone. J Biol Chem 287(33):27380–27395. doi:10.1074/jbc.M112.381566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150(1):125–143. doi:10.1104/pp.109.137703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lingard MJ, Bartel B (2009) Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. Plant Physiol 151(3):1354–1365. doi:10.1104/pp.109.142505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Aksam EB, Koek A, Kiel JA, Jourdan S, Veenhuis M, van der Klei IJ (2007) A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy 3(2):96–105

    Article  CAS  PubMed  Google Scholar 

  48. Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bartel B (2013) Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell 25(10):4085–4100. doi:10.1105/tpc.113.113407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Omi S, Nakata R, Okamura-Ikeda K, Konishi H, Taniguchi H (2008) Contribution of peroxisome-specific isoform of Lon protease in sorting PTS1 proteins to peroxisomes. J Biochem 143(5):649–660. doi:10.1093/jb/mvn020

    Article  CAS  PubMed  Google Scholar 

  50. Wang N, Maurizi MR, Emmert-Buck L, Gottesman MM (1994) Synthesis, processing, and localization of human Lon protease. J Biol Chem 269(46):29308–29313

    CAS  PubMed  Google Scholar 

  51. Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4(9):674–680. doi:10.1038/ncb836

    Article  CAS  PubMed  Google Scholar 

  52. Liu T, Lu B, Lee I, Ondrovicova G, Kutejova E, Suzuki CK (2004) DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J Biol Chem 279(14):13902–13910. doi:10.1074/jbc.M309642200

    Article  CAS  PubMed  Google Scholar 

  53. Li M, Rasulova F, Melnikov EE, Rotanova TV, Gustchina A, Maurizi MR, Wlodawer A (2005) Crystal structure of the N-terminal domain of E. coli Lon protease. Protein Sci 14(11):2895–2900. doi:10.1110/ps.051736805

  54. Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B (2010) Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9(2):252–272. doi:10.1111/j.1474-9726.2010.00555.x

    Article  CAS  PubMed  Google Scholar 

  55. Ngo JK, Davies KJ (2009) Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med 46(8):1042–1048. doi:10.1016/j.freeradbiomed.2008.12.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Gibellini L, Pinti M, Boraldi F, Giorgio V, Bernardi P, Bartolomeo R, Nasi M, De Biasi S, Missiroli S, Carnevale G, Losi L, Tesei A, Pinton P, Quaglino D, Cossarizza A (2014) Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J. doi:10.1096/fj.14-255869

    PubMed  Google Scholar 

  57. Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL (2011) Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 286(30):26424–26430. doi:10.1074/jbc.M110.215772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Granot Z, Kobiler O, Melamed-Book N, Eimerl S, Bahat A, Lu B, Braun S, Maurizi MR, Suzuki CK, Oppenheim AB, Orly J (2007) Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol 21(9):2164–2177. doi:10.1210/me.2005-0458

    Article  CAS  PubMed  Google Scholar 

  59. Lu B, Lee J, Nie X, Li M, Morozov YI, Venkatesh S, Bogenhagen DF, Temiakov D, Suzuki CK (2013) Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49(1):121–132. doi:10.1016/j.molcel.2012.10.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kita K, Suzuki T, Ochi T (2012) Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J Biol Chem 287(22):18163–18172. doi:10.1074/jbc.M112.362699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R (2013) Oxygen-sensitive mitochondrial accumulation of cystathionine beta-synthase mediated by Lon protease. Proc Natl Acad Sci USA 110(31):12679–12684. doi:10.1073/pnas.1308487110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Quiros PM, Espanol Y, Acin-Perez R, Rodriguez F, Barcena C, Watanabe K, Calvo E, Loureiro M, Fernandez-Garcia MS, Fueyo A, Vazquez J, Enriquez JA, Lopez-Otin C (2014) ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell reports 8(2):542–556. doi:10.1016/j.celrep.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  63. Bayot A, Gareil M, Chavatte L, Hamon MP, L’Hermitte-Stead C, Beaumatin F, Priault M, Rustin P, Lombes A, Friguet B, Bulteau AL (2014) Effect of Lon protease knockdown on mitochondrial function in HeLa cells. Biochimie 100:38–47. doi:10.1016/j.biochi.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  64. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129(1):111–122. doi:10.1016/j.cell.2007.01.047

    Article  CAS  PubMed  Google Scholar 

  65. Goto M, Miwa H, Suganuma K, Tsunekawa-Imai N, Shikami M, Mizutani M, Mizuno S, Hanamura I, Nitta M (2014) Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 14:76. doi:10.1186/1471-2407-14-76

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Bogenhagen DF, Rousseau D, Burke S (2008) The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283(6):3665–3675. doi:10.1074/jbc.M708444200

    Article  CAS  PubMed  Google Scholar 

  67. Cheng X, Kanki T, Fukuoh A, Ohgaki K, Takeya R, Aoki Y, Hamasaki N, Kang D (2005) PDIP38 associates with proteins constituting the mitochondrial DNA nucleoid. J Biochem 138(6):673–678. doi:10.1093/jb/mvi169

    Article  CAS  PubMed  Google Scholar 

  68. Fu GK, Markovitz DM (1998) The human LON protease binds to mitochondrial promoters in a single-stranded, site-specific, strand-specific manner. Biochemistry 37(7):1905–1909. doi:10.1021/bi970928c

    Article  CAS  PubMed  Google Scholar 

  69. Lu B, Yadav S, Shah PG, Liu T, Tian B, Pukszta S, Villaluna N, Kutejova E, Newlon CS, Santos JH, Suzuki CK (2007) Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem 282(24):17363–17374. doi:10.1074/jbc.M611540200

    Article  CAS  PubMed  Google Scholar 

  70. Matsushima Y, Goto Y, Kaguni LS (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci USA 107(43):18410–18415. doi:10.1073/pnas.1008924107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Pinti M, Gibellini L, Guaraldi G, Orlando G, Gant TW, Morselli E, Nasi M, Salomoni P, Mussini C, Cossarizza A (2010) Upregulation of nuclear-encoded mitochondrial LON protease in HAART-treated HIV-positive patients with lipodystrophy: implications for the pathogenesis of the disease. Aids 24(6):841–850. doi:10.1097/QAD.0b013e32833779a3

    Article  CAS  PubMed  Google Scholar 

  72. Hori O, Ichinoda F, Tamatani T, Yamaguchi A, Sato N, Ozawa K, Kitao Y, Miyazaki M, Harding HP, Ron D, Tohyama M, DM Stern, Ogawa S (2002) Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease. J Cell Biol 157(7):1151–1160. doi:10.1083/jcb.200108103

  73. Pinti M, Gibellini L, De Biasi S, Nasi M, Roat E, O’Connor JE, Cossarizza A (2011) Functional characterization of the promoter of the human Lon protease gene. Mitochondrion 11(1):200–206. doi:10.1016/j.mito.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  74. Bahat A, Perlberg S, Melamed-Book N, Isaac S, Eden A, Lauria I, Langer T, Orly J (2015) Transcriptional activation of LON Gene by a new form of mitochondrial stress: a role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol Cell Endocrinol 408:62–72. doi:10.1016/j.mce.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  75. Satoh J, Kawana N, Yamamoto Y (2013) Pathway analysis of ChIP-Seq-Based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul Syst Biol 7:139–152. doi:10.4137/GRSB.S13204

    Article  Google Scholar 

  76. Luciakova K, Sokolikova B, Chloupkova M, Nelson BD (1999) Enhanced mitochondrial biogenesis is associated with increased expression of the mitochondrial ATP-dependent Lon protease. FEBS Lett 444(2–3):186–188

    Article  CAS  PubMed  Google Scholar 

  77. Bota DA, Van Remmen H, Davies KJ (2002) Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 532(1–2):103–106

    Article  CAS  PubMed  Google Scholar 

  78. Bulteau AL, Szweda LI, Friguet B (2006) Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol 41(7):653–657. doi:10.1016/j.exger.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  79. Ngo JK, Pomatto LC, Davies KJ (2013) Upregulation of the mitochondrial Lon protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox biology 1(1):258–264. doi:10.1016/j.redox.2013.01.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Ugarte N, Petropoulos I, Friguet B (2010) Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 13(4):539–549. doi:10.1089/ars.2009.2998

    Article  CAS  PubMed  Google Scholar 

  81. Bahat A, Perlberg S, Melamed-Book N, Lauria I, Langer T, Orly J (2014) StAR enhances transcription of genes encoding the mitochondrial proteases involved in its own degradation. Mol Endocrinol 28(2):208–224. doi:10.1210/me.2013-1275

    Article  PubMed  CAS  Google Scholar 

  82. Gibellini L, Pinti M, Beretti F, Pierri CL, Onofrio A, Riccio M, Carnevale G, De Biasi S, Nasi M, Torelli F, Boraldi F, De Pol A, Cossarizza A (2014) Sirtuin 3 interacts with Lon protease and regulates its acetylation status. Mitochondrion. doi:10.1016/j.mito.2014.08.001

    PubMed  Google Scholar 

  83. Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6(4):318–327. doi:10.1038/nrm1618

    Article  CAS  PubMed  Google Scholar 

  84. Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K, Cheng I, Mikita N, Thilagavathi J, Lee J, Sarafianos S, Benkert A, Koehler A, Zhu A, Trovillion V, McGlincy M, Morlet T, Deardorff M, Innes AM, Prasad C, Chudley AE, Lee IN, Suzuki CK (2015) CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am J Hum Genet 96(1):121–135. doi:10.1016/j.ajhg.2014.12.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Dikoglu E, Alfaiz A, Gorna M, Bertola D, Chae JH, Cho TJ, Derbent M, Alanay Y, Guran T, Kim OH, Llerenar JC Jr, Yamamoto G, Superti-Furga G, Reymond A, Xenarios I, Stevenson B, Campos-Xavier B, Bonafe L, Superti-Furga A, Unger S (2015) Mutations in LONP1, a mitochondrial matrix protease, cause CODAS syndrome. Am J Med Genet Part A 167(7):1501–1509. doi:10.1002/ajmg.a.37029

    Article  CAS  PubMed  Google Scholar 

  86. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP (1984) Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol 16(4):481–488. doi:10.1002/ana.410160409

    Article  CAS  PubMed  Google Scholar 

  87. Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212. doi:10.1146/annurev.bi.61.070192.005523

    Article  CAS  PubMed  Google Scholar 

  88. Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61(6):931–937

    Article  CAS  PubMed  Google Scholar 

  89. Felk S, Ohrt S, Kussmaul L, Storch A, Gillardon F (2010) Activation of the mitochondrial protein quality control system and actin cytoskeletal alterations in cells harbouring the MELAS mitochondrial DNA mutation. J Neurol Sci 295(1–2):46–52. doi:10.1016/j.jns.2010.05.013

    Article  CAS  PubMed  Google Scholar 

  90. Wu SB, Ma YS, Wu YT, Chen YC, Wei YH (2010) Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome. Mol Neurobiol 41(2–3):256–266. doi:10.1007/s12035-010-8123-7

    Article  CAS  PubMed  Google Scholar 

  91. Hansen J, Corydon TJ, Palmfeldt J, Durr A, Fontaine B, Nielsen MN, Christensen JH, Gregersen N, Bross P (2008) Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience 153(2):474–482. doi:10.1016/j.neuroscience.2008.01.070

    Article  CAS  PubMed  Google Scholar 

  92. Guillon B, Bulteau AL, Wattenhofer-Donze M, Schmucker S, Friguet B, Puccio H, Drapier JC, Bouton C (2009) Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins. FEBS J 276(4):1036–1047. doi:10.1111/j.1742-4658.2008.06847.x

    Article  CAS  PubMed  Google Scholar 

  93. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Skoldberg F, Husebye ES, Eng C, Maher ER (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69(1):49–54. doi:10.1086/321282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard CW 3rd, Cornelisse CJ, Devilee P, Devlin B (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287(5454):848–851

    Article  CAS  PubMed  Google Scholar 

  95. Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, Jouanno E, Jeunemaitre X, Benit P, Tzagoloff A, Rustin P, Bertherat J, Favier J, Gimenez-Roqueplo AP (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19(15):3011–3020. doi:10.1093/hmg/ddq206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26(3):268–270. doi:10.1038/81551

    Article  CAS  PubMed  Google Scholar 

  97. Bezawork-Geleta A, Saiyed T, Dougan DA, Truscott KN (2014) Mitochondrial matrix proteostasis is linked to hereditary paraganglioma: LON-mediated turnover of the human flavinylation factor SDH5 is regulated by its interaction with SDHA. FASEB J. doi:10.1096/fj.13-242420

    PubMed  Google Scholar 

  98. Pinti M, Salomoni P, Cossarizza A (2006) Anti-HIV drugs and the mitochondria. Biochim Biophys Acta 1757(5–6):700–707. doi:10.1016/j.bbabio.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  99. Nasi M, Pinti M, De Biasi S, Gibellini L, Ferraro D, Mussini C, Cossarizza A (2014) Aging with HIV infection: a journey to the center of inflammAIDS, immunosenescence and neuroHIV. Immunol Lett 162(1 Pt B):329–333. doi:10.1016/j.imlet.2014.06.012

  100. Polo M, Alegre F, Funes HA, Blas-Garcia A, Victor VM, Esplugues JV, Apostolova N (2015) Mitochondrial (dys)function—a factor underlying the variability of efavirenz-induced hepatotoxicity? Br J Pharmacol 172(7):1713–1727. doi:10.1111/bph.13018

    Article  CAS  PubMed  Google Scholar 

  101. Erjavec N, Bayot A, Gareil M, Camougrand N, Nystrom T, Friguet B, Bulteau AL (2013) Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. Free Radic Biol Med 56:9–16. doi:10.1016/j.freeradbiomed.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  102. Luce K, Osiewacz HD (2009) Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 11(7):852–858. doi:10.1038/ncb1893

    Article  CAS  PubMed  Google Scholar 

  103. Bakala H, Delaval E, Hamelin M, Bismuth J, Borot-Laloi C, Corman B, Friguet B (2003) Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. Eur J Biochem FEBS 270(10):2295–2302

  104. Koltai E, Hart N, Taylor AW, Goto S, Ngo JK, Davies KJ, Radak Z (2012) Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am J Physiol Regul Integr Comp Physiol 303(2):R127–R134. doi:10.1152/ajpregu.00337.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Marton O, Koltai E, Takeda M, Koch LG, Britton SL, Davies KJ, Boldogh I, Radak Z (2014) Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflugers Arch Eur J Physiol. doi:10.1007/s00424-014-1554-7

  106. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285(5432):1390–1393

    Article  CAS  PubMed  Google Scholar 

  107. Guarente L (2008) Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell 132(2):171–176. doi:10.1016/j.cell.2008.01.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Hepple RT, Baker DJ, Kaczor JJ, Krause DJ (2005) Long-term caloric restriction abrogates the age-related decline in skeletal muscle aerobic function. FASEB J 19(10):1320–1322. doi:10.1096/fj.04-3535fje

    CAS  PubMed  Google Scholar 

  109. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942. doi:10.2337/db08-0349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Stadtman ER (1992) Protein oxidation and aging. Science 257(5074):1220–1224

    Article  CAS  PubMed  Google Scholar 

  111. Friguet B, Bulteau AL, Petropoulos I (2008) Mitochondrial protein quality control: implications in ageing. Biotechnol J 3(6):757–764. doi:10.1002/biot.200800041

    Article  CAS  PubMed  Google Scholar 

  112. Delaval E, Perichon M, Friguet B (2004) Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. Eur J Biochem FEBS 271(22):4559–4564. doi:10.1111/j.1432-1033.2004.04422.x

    Article  CAS  Google Scholar 

  113. Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Fukai K, Iwai-Kanai E, Matoba S (2014) Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure. Circ Heart Fail 7(3):500–509. doi:10.1161/CIRCHEARTFAILURE.113.001062

  114. Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10(9):671–684. doi:10.1038/nrd3504

    Article  CAS  PubMed  Google Scholar 

  115. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95. doi:10.1038/nrc2981

    Article  CAS  PubMed  Google Scholar 

  116. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  117. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. doi:10.1146/annurev-cellbio-092910-154237

    Article  CAS  PubMed  Google Scholar 

  118. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20. doi:10.1016/j.cmet.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  119. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12(10):685–698. doi:10.1038/nrc3365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  121. Bernstein SH, Venkatesh S, Li M, Lee J, Lu B, Hilchey SP, Morse KM, Metcalfe HM, Skalska J, Andreeff M, Brookes PS, Suzuki CK (2012) The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood 119(14):3321–3329. doi:10.1182/blood-2011-02-340075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Nie X, Li M, Lu B, Zhang Y, Lan L, Chen L, Lu J (2013) Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics. PLoS One 8(11):e81084. doi:10.1371/journal.pone.0081084

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Cheng CW, Kuo CY, Fan CC, Fang WC, Jiang SS, Lo YK, Wang TY, Kao MC, Lee AY (2013) Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis 4:e681. doi:10.1038/cddis.2013.204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Liu Y, Lan L, Huang K, Wang R, Xu C, Shi Y, Wu X, Wu Z, Zhang J, Chen L, Wang L, Yu X, Zhu H, Lu B (2014) Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer. Oncotarget 5(22):11209–11224

    Article  PubMed Central  PubMed  Google Scholar 

  125. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB, Chandran U, Monzon FA, Becich MJ, Wei JT, Pienta KJ, Ghosh D, Rubin MA, Chinnaiyan AM (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8(5):393–406. doi:10.1016/j.ccr.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  126. Chen Y, Fu LL, Wen X, Wang XY, Liu J, Cheng Y, Huang J (2014) Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis 5:e1047. doi:10.1038/cddis.2014.14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA 99(21):13653–13658. doi:10.1073/pnas.222538099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Bota DA, Ngo JK, Davies KJ (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 38(5):665–677. doi:10.1016/j.freeradbiomed.2004.11.017

    Article  CAS  PubMed  Google Scholar 

  129. Zhu Y, Wang M, Lin H, Huang C, Shi X, Luo J (2002) Epidermal growth factor up-regulates the transcription of mouse lon homology ATP-dependent protease through extracellular signal-regulated protein kinase- and phosphatidylinositol-3-kinase-dependent pathways. Exp Cell Res 280(1):97–106

    Article  CAS  PubMed  Google Scholar 

  130. King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229(4717):974–976

    Article  CAS  PubMed  Google Scholar 

  131. Mel’nikov EE, Tsirul’nikov KB, Rotanova TV (2001) Coupling of proteolysis and hydrolysis of ATP upon functioning of Lon proteinase of Escherichia Coli. II. Hydrolysis of ATP and activity of peptide hydrolase sites of the enzyme. Bioorg Khim 27(2):120–129

    PubMed  Google Scholar 

  132. Thomas-Wohlever J, Lee I (2002) Kinetic characterization of the peptidase activity of Escherichia coli Lon reveals the mechanistic similarities in ATP-dependent hydrolysis of peptide and protein substrates. Biochemistry 41(30):9418–9425

    Article  CAS  PubMed  Google Scholar 

  133. Granot Z, Geiss-Friedlander R, Melamed-Book N, Eimerl S, Timberg R, Weiss AM, Hales KH, Hales DB, Stocco DM, Orly J (2003) Proteolysis of normal and mutated steroidogenic acute regulatory proteins in the mitochondria: the fate of unwanted proteins. Mol Endocrinol 17(12):2461–2476. doi:10.1210/me.2003-0074

    Article  CAS  PubMed  Google Scholar 

  134. Bayot A, Basse N, Lee I, Gareil M, Pirotte B, Bulteau AL, Friguet B, Reboud-Ravaux M (2008) Towards the control of intracellular protein turnover: mitochondrial Lon protease inhibitors versus proteasome inhibitors. Biochimie 90(2):260–269. doi:10.1016/j.biochi.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  135. Wang HM, Cheng KC, Lin CJ, Hsu SW, Fang WC, Hsu TF, Chiu CC, Chang HW, Hsu CH, Lee AY (2010) Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci 101(12):2612–2620. doi:10.1111/j.1349-7006.2010.01701.x

    Article  CAS  PubMed  Google Scholar 

  136. Sheth A, Escobar-Alvarez S, Gardner J, Ran L, Heaney ML, Scheinberg DA (2014) Inhibition of human mitochondrial peptide deformylase causes apoptosis in c-myc-overexpressing hematopoietic cancers. Cell Death Dis 5:e1152. doi:10.1038/cddis.2014.112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C (2012) Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS One 7(12):e50545. doi:10.1371/journal.pone.0050545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 110(16):6601–6606. doi:10.1073/pnas.1302961110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been supported by Associazione Italiana per la Ricerca sul Cancro (AIRC), Grant No. 11341 to AC, and by grants from the National Basic Research Program of China (973 Program, No. 2013CB531700), National Natural Science Foundation of China (No. 31070710, No. 31171345), Zhejiang Qianjiang Talent Project B (No. 2010R10045) to BL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Pinti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinti, M., Gibellini, L., Liu, Y. et al. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell. Mol. Life Sci. 72, 4807–4824 (2015). https://doi.org/10.1007/s00018-015-2039-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2039-3

Keywords

Navigation