Skip to main content
Log in

Regulation of αA- and αB-crystallins via phosphorylation in cellular homeostasis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

αA-Crystallin (αA) and αB-crystallin (αB) are small heat shock proteins responsible for the maintenance of transparency in the lens. In non-lenticular tissues, αB is involved in both maintenance of the cytoskeleton and suppression of neurodegeneration amongst other roles. Despite their importance in maintaining cellular health, modifications and mutations to αA and αB appear to play a role in disease states such as cataract and myopathies. The list of modifications that have been reported is extensive and include oxidation, disulphide bond formation, C- and N-terminal truncation, acetylation, carboxymethylation, carboxyethylation, carbamylation, deamidation, phosphorylation and methylation. Such modifications, notably phosphorylation, are alleged to cause changes to chaperone activity by inducing substructural changes and altering subunit exchange dynamics. Although the effect modification has on the activities of αA and αB is contentious, it has been proposed that these changes are responsible for the induction of hyperactivity and are thereby indirectly responsible for protein deposition characteristic of many diseases associated with αA and αB. This review compiles all reported sites of αA and αB modifications, and investigates the role phosphorylation, in particular, plays in cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennardini F, Wrzosek A, Chiesi M (1992) αB-Crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res 71:288–294

    Article  CAS  PubMed  Google Scholar 

  2. Djabali K, de Nechaud B, Landon F, Portier M-M (1997) αB-Crystallin interacts with intermediate filaments in response to stress. J Cell Sci 110:2759–2769

    PubMed  Google Scholar 

  3. Launay N, Goudeau B, Kato K, Vicart P, Lilienbaum A (2006) Cell signaling pathways to αB-crystallin following stresses of the cytoskeleton. Exp Cell Res 312:3570–3584

  4. Arrigo A-P, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, Guillet D, Moulin M, Diaz-Latoud C, Vicart P (2007) Hsp27 (HspB1) and αB-crystallin (HspB5) as therapeutic targets. FEBS Lett 581:3665–3874

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Martin E, Gonzales V, Borchelt DR, Lee MK (2008) Differential regulation of sHsps in transgenic mouse models of neurodegenerative diseases. Neurobiol Aging 29:586–597

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Hagemann TL, Boelens WC, Wawrousek EF, Messing A (2009) Suppression of GFAP toxicity by αB-crystallin in mouse models of Alexander disease. Hum Mol Genet 18:1190–1199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Vanita V, Singh JR, Hejtmancik JF, Nurnberg P, Hennies HC, Singh D, Sperling K (2006) A novel fan-shaped cataract-microcornea syndrome caused by a mutation of CRYAA in an Indian family. Mol Vis 12:518–522

    CAS  PubMed  Google Scholar 

  8. Berry V, Francis P, Reddy MA, Collyer D, Vithana E, Mackay I, Dawson G, Carey AH, Moore A, Bhattacharya SS, Quinlan RA (2001) αB-Crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in human. Am J Hum Genet 69:1141–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Liu Y, Zhang X, Luo L, Wu M, Zeng R, Cheng G, Hu B, Liu B, Liang JJ, Shang F (2006) A novel αB-crystallin mutation associated with autosomal dominant congenital lamellar cataract. Invest Ophthalmol Vis Sci 47:1069–1075

    Article  PubMed Central  PubMed  Google Scholar 

  10. Vicart P, Caron A, Guicheney P, Li Z, Prevost M-C, Faure A, Chateau D, Chapon F, Tome F, Dupret J-M, Paulin D, Fardeau M (1998) A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    Article  CAS  PubMed  Google Scholar 

  11. Liu M, Ke T, Wang Z, Yang Q, Chang W, Jiang F, Tang Z, Li H, Ren X, Wang X, Wang T, Li Q, Yang J, Liu J, Wang QK (2006) Identification of CRYAB mutation associated with autosomal dominant posterior polar cataract in a Chinese family. Invest Ophthalmol Vis Sci 47:3461–3466

    Article  PubMed  Google Scholar 

  12. Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human α-crystallin gene CRYAA. Hum Mol Genet 7:471–474

    Article  CAS  PubMed  Google Scholar 

  13. Mackay DS, Andley UP, Shiels A (2003) Cell death triggered by a novel mutation in the αA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet 11:784–793

    Article  CAS  PubMed  Google Scholar 

  14. Richter L, Flodman P, von-Bischhoffshausen FB, Burch D, Brown S, Nguyen L, Turner J, Spence MA, Bateman JB (2008) Clinical variability of autosomal dominant cataract, microcornea and corneal opacity and novel mutation in the αA-crystallin gene (CRYAA). Am J Med Genet 146:833–842

  15. Su D, Guo Y, Li Q, Guan L, Zhu S, Ma X (2012) A novel mutation in CRYAA is associated with autosomal dominant suture cataracts in a Chinese family. Mol Vis 18:3057–3063

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Pras E, Frydman M, Levy-Nissenbaum E, Bakhan T, Raz J, Assia EI, Goldman B, Pras E (2000) A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Persian Jewish family. Invest Ophthalmol Vis Sci 41:3511–3515

  17. Inagaki N, Hayashi T, Arimura T, Koga Y, Takahashi M, Shibata H, Teraoka K, Chikamori T, Yamashina A, Kimura A (2006) αB-Crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Commun 342:379–386

    Article  CAS  PubMed  Google Scholar 

  18. Pilotto A, Marziliano N, Pasotti M, Grasso M, Costante AM, Arbustini E (2006) αB-Crystallin mutation in dilated cardiomyopathies: low prevalence in a consecutive series of 200 unrelated probands. Biochem Biophys Res Commun 346:1115–1117

    Article  CAS  PubMed  Google Scholar 

  19. Reilich P, Schoser B, Schramm N, Krause S, Schessl J, Kress W, Muller-Hocker J, Walter MC, Lochmuller H (2010) The p. G154S mutation of the αB-crystallin gene (CRYAB) causes late-onset distal myopathy. Neuromuscul Disord 20:255–259

    Article  PubMed  Google Scholar 

  20. Selcen D, Engel AG (2003) Myofibrillar myopathy caused by novel dominant negative αB-crystallin mutations. Ann Neurol 54:804–810

    Article  CAS  PubMed  Google Scholar 

  21. Hanson SR, Hasan A, Smith DL, Smith JB (2000) The major in vivo modifications of the human water-soluble lens crystallins are disulphide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res 71:195–207

    Article  CAS  PubMed  Google Scholar 

  22. Lund AL, Smith JB, Smith DL (1996) Modifications of the water-insoluble human lens α-crystallins. Exp Eye Res 63:661–672

    Article  CAS  PubMed  Google Scholar 

  23. Wilmarth PA, Tanner S, Dasari S, Nagalla SR, Riviere MA, Bafna V, Pevzner PA, David LL (2006) Age-related changes in humans crystallins determined from comparative analysis of post-translational modifications in young and aged lenses: does deamidation contribute to crystallin insolubility. J Proteome Res 5:2554–2566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. MacCoss MJ, McDonald WH, Saraf A, Sadygov R, Clark JM, Tasto JJ, Gould KL, Wolters D, Washburn M, Weiss A, Clark JL, Yates JR (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci 99:7900–7905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kamei A, Hamaguchi T, Matsuura N, Iwase H, Masuda K (2000) Post-translational modification of αB-crystallin of normal human lenses. Biol Pharm Bull 23:226–230

    Article  CAS  PubMed  Google Scholar 

  26. Hains PG, Truscott RJW (2010) Age-dependent deamidation of lifelong proteins in the human lens. Invest Ophthalmol Vis Sci 51:3107–3114

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wang Z, Han J, David LL, Schey KL (2013) Proteomics and phosphoproteomics analysis of human lens fibre cell membranes. Invest Ophthalmol Vis Sci 54:1135–1143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wang Z, Lyons B, Truscott RJW, Schey KL (2013) Human protein aging: modification and crosslinking through dehydroalanine and dehydrobutyrine intermediates. Aging Cell 13:226–234

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Huang C-H, Wang Y-T, Tsai C-F, Chen Y-J, Lee J-S, Chiou S-H (2011) Phosphoproteomics characterisation of novel phosphorylated sites of lens proteins fom normal and cataractous human eye lenses. Mol Vis 17:186–198

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Searle BC, Dasari S, Wilmarth PA, Turner M, Reddy AP, David LL, Nagalla SR (2005) Identification of protein modifications using MS/MS de novo sequencing and the open Sea Alignment algorithm. J Proteome Res 4:546–554

    Article  CAS  PubMed  Google Scholar 

  31. Miesbauer LR, Zhou X, Yang Z, Yang Z, Sun Y, Smith DL, Smith JB (1994) Post-translational modifications of water-soluble human lens crystallins from young adults. J Biol Chem 269:12494–12502

    CAS  PubMed  Google Scholar 

  32. Aquilina JA, Benesch JLP, Ding LL, Yaron O, Horwitz J, Robinson CV (2004) Phosphorylation of αB-crystallin alters chaperone function through loss of dimeric substructure. J Biol Chem 279:28675–28680

    Article  CAS  PubMed  Google Scholar 

  33. Ecroyd H, Meehan S, Horwitz J, Aquilina JA, Benesch JLP, Robinson CV, Macphee CE, Carver JA (2007) Mimicking phosphorylation of αB-crystallin affects its chaperone activity. Biochem J 401:129–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Peschek J, Braun N, Rohrburg J, Back KC, Kriehuber T, Kastenmuller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of αB-crystallin. Proc Natl Acad Sci 110:3780–3789

    Article  Google Scholar 

  35. Ahmad F, Raman B, Ramakrishna T, Rao M (2008) Effect of phosphorylation of αB-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of αB-crystallin and its phosphorylation-mimicking mutant. J Mol Biol 375:1040–1051

    Article  CAS  PubMed  Google Scholar 

  36. Kato K, Ito H, Kamei A, Iwamoto Y II (2002) Innervation-dependent phosphorylation and accumulation of αB-crystallin and Hsp27 as insoluble complexes in disused muscle. FASEB J 16:1432–1434

    CAS  PubMed  Google Scholar 

  37. Golenhofen N, Htun P, Ness W, Koob R, Schaper W, Drenckhahn D (1999) Binding of the stress protein αB-crystallin to cardiac myofibrils correlates with the degree of myocardial damage during ischemia/reperfusion in vivo. J Mol Cell Cardiol 31:569–580

    Article  CAS  PubMed  Google Scholar 

  38. Launay N, Tarze A, Vicart P, Lilienbaum A (2010) Serine 59 phosphorylation of αB-crystallin down-regulates its anti-apoptotic function by binding and sequestering Bcl-2 in breast cancer cells. J Biol Chem 285:37324–37332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Maddala R, Rao V (2005) α-Crystallin localises to the leading edges of migrating lens epithelial cells. Exp Eye Res 306:203–215

    CAS  Google Scholar 

  40. Wang K, Spector A (1996) α-Crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur J Biochem 242:56–66

    Article  CAS  PubMed  Google Scholar 

  41. Ito H, Kamei A, Iwamoto I, Inaguma Y, Garcia-Mata R, Sztul E, Kato K (2002) Inhibition of proteasomes induces accumulation, phosphorylation, and recruitment of Hsp27and αB-crystallin to aggresomes. J Biochem (Tokyo) 131:593–603

    Article  CAS  Google Scholar 

  42. Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski CC (2000) αB-Crystallin gene induction and phosphorylation by MKK6-activated p38. J Biol Chem 275:23825–23833

    Article  CAS  PubMed  Google Scholar 

  43. Golenhofen N, Ness W, Koob R, Htun P, Schaper W, Drenckhahn D (1998) Ischemia-induced phosphorylation and translocation of stress protein αB-crystallin to Z lines of myocardium. Am J Physiol 274:1457–1464

    Google Scholar 

  44. Eaton P, Fuller W, Bell JR, Shattock MJ (2001) αB-crystallin translocation and phosphorylation: signal transduction pathways and preconditioning in the isolated rat heart. J Mol Cell Cardiol 33:1659–1671

    Article  CAS  PubMed  Google Scholar 

  45. Adhikari AS, Singh BN, Rao KS, Rao M (2011) αB-Crystallin, a small heat shock protein, modulates NF-κB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-α induced toxicity. Biochim Biophys Acta 1813:1532–1542

    Article  CAS  PubMed  Google Scholar 

  46. Morrison LE, Hoover HE, Thuerauf DJ, Glembotski CC (2003) Mimicking phosphorylation of αB-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis. Circ Res 92:203–211

    Article  CAS  PubMed  Google Scholar 

  47. den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC (2005) Nuclear import of αB-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 280:37139–37148

    Article  CAS  Google Scholar 

  48. den Engelsman J, van de Schootbrugge C, Yong J, Pruijn GJM, Boelens WC (2013) Pseudophosphorylated αB-crystallin is a nuclear chaperone imported into the nucleus with help of the SMN complex. PLoS One 8:73489–73498

    Article  CAS  Google Scholar 

  49. Li R, Reiser G (2011) Phosphorylation of Ser45 and Ser59 of αB-crystallin and p38/extracellular regulated kinase activity determine αB-crystallin-mediated protection of rat brain astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem 118:354–364

    Article  CAS  PubMed  Google Scholar 

  50. Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein αB-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–38736

    Article  CAS  PubMed  Google Scholar 

  51. Sun TX, Das BK, Liang JJN (1997) Conformational and functional differences between recombinant human lens αA- and αB-crystallin. J Biol Chem 272:6220–6225

    Article  CAS  PubMed  Google Scholar 

  52. Peschek J, Braun N, Franzmann TM, Georgalis Y, Halsbeck M, Weinkaut S, Buchner J (2009) The eye lens chaperone α-crystallin forms defined globular bodies. Proc Natl Acad Sci 106:13272–13277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Grey AC, Schey KL (2009) Age-related changes in the spatial distribution of human lens α-crystallin products by MALDI imaging mass spectrometry. Invest Ophthalmol Vis Sci 50:4319–4329

    Article  PubMed Central  PubMed  Google Scholar 

  54. Bova MP, Mchaourab HS, Han Y, Fung BKK (2000) Subunit exchange of small heat shock proteins: analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 275:1035–1042

    Article  CAS  PubMed  Google Scholar 

  55. Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc Natl Acad Sci USA 79:2360–2364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Klemenz R, Frohli E, Steiger R, H., Schafer R, Aoyama A (1991b) αB-crystallin is a small heat shock protein. Proceedings of the National Academy of Science USA 88:3652-3656

  57. Horwitz J (1992) α-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Laganowsky A, Benesch JLP, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D (2010) Crystal structures of truncated αA- and αB-crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. de Jong WW, Caspers G-J, Leunissen JAM (1998) Genealogy of the α-crystallin–small heat-shock protein superfamily. Int JBiol Macromol 22:151–162

    Article  Google Scholar 

  60. Jehle S, Vollmar BS, Bardiaux B, Dove KK, Rajagopal P, Gonen T, Oschkinat H, Klevit RE (2011) N-terminal domain of αB-crystallin provides a conformational switchfor multimerization and structural heterogeneity. Proc Natl Acad Sci 108:6409–6414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Smulders RHPH, Van Boekel MAM, De Jong WW (1998) Mutations and modifications support a ‘pitted-flexiball’ model for α-crystallin. Int JBiol Macromol 22:187–196

    Article  CAS  Google Scholar 

  62. Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kuhne R, Stout JR, Higman VA, Klevit RE, van Rossum B-J, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nature 17:1037–1043

    CAS  Google Scholar 

  63. Clark AR, Naylor CE, Bagneris C, Keep NH, Slingsby C (2011) Crystal structure of R120G disease mutant of human αB-crystallin domain dimer shows closure of a groove. J Mol Biol 408:118–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Braun N, Zacharias M, Peschek J, Kastenmuller A, Zou J, Hanzlik M, Haslbek M, Rappsilber J, Buchner J, Weinkauf S (2011) Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci 108:20491–20496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. J Mol Biol 392:1242–1252

    Article  CAS  PubMed  Google Scholar 

  66. Baldwin AJ, Lioe H, Hilton GR, Baker LA, Rubinstein JL, Kay LE, Benesch JLP (2011) The polydispersity of αB-crystallin is rationalised by an interconverting polyhedral architecture. Structure 19:1855–1863

    Article  CAS  PubMed  Google Scholar 

  67. Haley DA, Horwitz J, Stewart PL (1998) The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J Mol Biol 277:27–35

    Article  CAS  PubMed  Google Scholar 

  68. Benesch JLP, Ayoub M, Robinson CV, Aquilina JA (2008) Small heat shock protein activity is regulated by variable oligomeric substructure. J Biol Chem 283:28513–28517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Delbecq SP, Klevit RE (2013) One size does not fit all: the oligomeric states of αB-crystallin. FEBS Lett 587:1073–1080

    Article  CAS  PubMed  Google Scholar 

  70. Valasco PT, Lukas TJ, Murthy SNP, Duglas-Tabor Y, Garland DL, Lorand L (1997) Hierarchy of lens proteins requiring protection against heat induced precipitation by the α-crystallin chaperone. Exp Eye Res 65:497–505

    Article  Google Scholar 

  71. Quinlan R (2002) Cytoskeletal competence requires protein chaperones. In: Arrigo AP, Muller WEG (eds) Small stress proteins. Springer, Berlin, pp 219–228

    Chapter  Google Scholar 

  72. Horwitz J (2003) α-Crystallin. Exp Eye Res 76:145–153

    Article  CAS  PubMed  Google Scholar 

  73. Cobb BA, Petrash JM (2002) α-crystallin chaperone-like activity and membrane binding in age-related cataracts. Biochemistry (Mosc) 41:483–490. doi:10.1021/bi0112457

    Article  CAS  Google Scholar 

  74. Farnsworth PN, Frauwith H, Groth-Vasselli B, Singh K (1998) Refinement of 3D structure of bovine lens αA-crystallin. Int JBiol Macromol 22:175–185

    Article  CAS  Google Scholar 

  75. Bindels JG, Misdom LW, Hoenders HJ (1985) The reaction of citraconic anhydride with bovine α-crystallin lysine residues: surface probing and dissociation-reassociation studies. Biochim Biophys Acta 828:255–260

    Article  CAS  PubMed  Google Scholar 

  76. Cherian M, Abraham EC (1995) Decreased molecular chaperone property of α-crystallins due to posttranslational modifications. Biochem Biophys Res Commun 208:675–679

    Article  CAS  PubMed  Google Scholar 

  77. Derham BK, Harding JJ (1997) Effect of aging on the chaperone-like function of human α-crystallin assessed by three methods. Biochem J 328:763–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Soti C, Csermely P (2000) Molecular chaperones and the aging process. Biogerontology 1:225–233

    Article  CAS  PubMed  Google Scholar 

  79. Kantorow M, Piatigorsky J (1998) Phosphorylations of αA- and αB-crystallin. Int JBiol Macromol 22:307–314

    Article  CAS  Google Scholar 

  80. Deng M, Chen P-C, Xie S, Zhao J, Gong L, Liu J, Zhang L, Sun S, Liu J, Ma H, Batra SK, Li D (2010) The small heat shock protein αA-crystallin is expressed in pancreas and acts as a negative regulator of carcinogenesis. Biochim Biophys Acta 1802:621–631

    Article  CAS  PubMed  Google Scholar 

  81. Whiston EA, Sugi N, Kamradt MC, Krevosky M, Sack C, Heimer SR, Engelbert M, Wawrousek EF, Gilmore MS, Ksander BR, Gregory MS (2008) αB-Crystallin protects retinal tissue during Staphylococcus aureus-induced endophthalmitis. Infect Immun 76:1781–1790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Klemenz R, Frohli E, Aoyama A, Hoffmann S, Simpson RJ, Moritz RL, Schafer R (1991) αB-accumulation is a specific response to Ha-ras and v-mos oncogene expression in mouse NIH 3T3 fibroblasts. Mol Cell Biol 11:803–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Dasgupta S, Hohman TC, Carper D (1992) Hypertonic stress induces αB-crystallin expression. Exp Eye Res 54:461–470

    Article  CAS  PubMed  Google Scholar 

  84. Klemenz R, Andres AC, Frohli E, Schafer R, Aoyama A (1993) Expression of the murine small heat shock proteins Hsp25 and αB-crystallin in the absence of stress. J Cell Biol 120:639–645

    Article  CAS  PubMed  Google Scholar 

  85. Atomi Y, Yamada S, Hong YM (1990) Dynamic expression of αB-crystallin in skeletal muscle. Proc Jpn Acad Ser B 66:203–208

    Article  Google Scholar 

  86. Carver JA, Lindner RA (1998) NMR spectroscopy of α-crystallin: insights into the structure, interactions and chaperone action of sHsps. Int JBiol Macromol 22:197–209

    Article  CAS  Google Scholar 

  87. Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) αB-Crystallin and Hsp28 are enhance in the cerebral cortex of patients with Alzheimer’s disease. J Neurol Sci 119:203–208

    Article  CAS  PubMed  Google Scholar 

  88. Arac A, Brownell SE, Rothbard JB, Chen C, Ko RM, Pereira MP, Albers GW, Steinman L, Steinberg GK (2011) Systemic augmentation of αB-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proc Natl Acad Sci 108:13287–13292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Mehlen P, Kretz-Remy C, Preville X, Arrigo A-P (1996) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFα-induced cell death. EMBO J 15:2695–2706

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O’Connor KC, Hafler DA, Sobel RA, Robinson WH, Steinman L (2007) Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature 448:474–481

    Article  CAS  PubMed  Google Scholar 

  91. Head M, Corbin E, Goldman J (1993) Overexpression and abnormal modification of the stress proteins αB-crystallin and Hsp27 in Alexanders disease. Am J Pathol 143:1743–1753

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Iwaki T, Kume-Iwaki A, Liem RKH, Goldman JE (1989) αB-Crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57:71–78

    Article  CAS  PubMed  Google Scholar 

  93. Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F, Diaz LK, Turbin D, Karaca G, Wiley E, Nielsen TO, Perou CM, Cryns VL (2006) αB-Crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Chin D, Boyle DM, Williams RM, Ferguson K, Pandeya N, Pedley J, Campbell CM, Theile DR, Parsons PG, Coman WB (2005) αB-Crystallin, a new independent marker for poor prognosis in head and neck cancer. Laryngoscope 115:1239–1242

    Article  CAS  PubMed  Google Scholar 

  95. Kamradt MC, Lu M, Werner ME, Kwan T, Chen F, Strohecker A, Oshita S, Wilkinson JC, Yu C, Oliver PG, Duckett CS, Buchsbaum DJ, LoBuglio AF, Jordan VC, Cryns VL (2005) The small heat shock protein αB-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase 3. J Biol Chem 280:11059–11066

    Article  CAS  PubMed  Google Scholar 

  96. Phelps Brown N, Bron AJ (eds) (1996) Lens disorders: a clinical manual of cataract diagnosis. Butterworth-Heinemann, Oxford

    Google Scholar 

  97. Bloemendal H, de Jong WW, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485

    Article  CAS  PubMed  Google Scholar 

  98. Srivastava OP, Kirk MC, Srivastava K (2004) Characterization of covalent multimers of crystallins in aging human lenses. J Biol Chem 279:10901–10909

    Article  CAS  PubMed  Google Scholar 

  99. Asomugha CO, Gupta R, Srivastava OP (2010) Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labelling. Mol Vis 16:476–494

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Lin PP, Barry RC, Smith DL, Smith JB (1998) In vivo acetylation identified at lysine 70 of human lens αA-crystallin. Protein Sci 7:1451–1457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Park Z-Y, Sadygov R, Clark JM, Clark JI, Yates JR (2007) Assigning in vivo carbamylation and acetylation in human lens proteins using tandem mass spectrometry and database searching. Int J Mass Spectrom 259:161–173

    Article  CAS  Google Scholar 

  102. Lyons B, Kwan AH, Truscott RJW (2014) Spontaneous cyclization of polypeptides with a penultimate Asp, Asn or isoAsp at the N-terminus and implications for cleavage by aminopeptidase. FEBS J 281:2945–2955

    Article  CAS  PubMed  Google Scholar 

  103. Colvis CM, Duglas-Tabor Y, Werth KB, Vieira NE, Kowalak JA, Janjani A, Yergey AL, Garland DL (2000) Tracking pathology and proteomics: identification of in vivo degradation products of αB-crystallin. Electrophoresis 21:2219–2227

    Article  CAS  PubMed  Google Scholar 

  104. Srivastava OP, Srivastava K (2003) Existence of deamidated αB-crystallin fragments in normal and cataractous human lenses. Mol Vis 9:110–118

    CAS  PubMed  Google Scholar 

  105. Jimenez-Asensio J, Colvis CM, Kowalak JA, Duglas-Tabor Y, Datiles MB, Moroni M, Rao M, Balasubramanian D, Janjani A, Garland D (1999) An atypical form of αB-crystallin is present in high concentration in some human cataractous lenses. J Biol Chem 274:32287–32294

    Article  CAS  PubMed  Google Scholar 

  106. Lapko VN, Smith DL, Smith JB (2001) In vivo carbamylation and acetylation of water-soluble human lens αB-crystallin lysine 92. Protein Sci 10:1130–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Chaves JM, Srivastava K, Gupta R, Srivastava OP (2008) Structural and functional roles of deamidation and/or truncation of N- or C-termini in human αA-crystallin. Biochemistry (Mosc) 47:10069–10083

    Article  CAS  Google Scholar 

  108. Asomugha CO, Gupta R, Srivastava OP (2011) Structural and functional roles of deamidation of N146 and/or truncation of NH2- or COOH-termini in human αB-crystallin. Mol Vis 17:2407–2420

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Ito H, Okamoto K, Nakayama H, Isobe T, Kato K (1997) Phosphorylation of αB-crystallin in response to various types of stress. J Biol Chem 272:29934–29941

    Article  CAS  PubMed  Google Scholar 

  110. Wang K, Spector A, Ma W (1995) Phosphorylation of α-crystallin in rat lenses is stimulated by H2O2 but phosphorylation has no effect on chaperone activity. Exp Eye Res 61:115–124

    Article  CAS  PubMed  Google Scholar 

  111. Takemoto L, Boyle D (1998) The possible role of α-crystallins in human senile cataractogenesis. Int JBiol Macromol 22:331–337

    Article  CAS  Google Scholar 

  112. Kato K, Ito H, Kamei K, Inaguma Y, Iwamoto I, Saga S (1998) Phosphorylation of αB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J Biol Chem 273:28346–28354

    Article  CAS  PubMed  Google Scholar 

  113. Schieven G, Martin GS (1988) Nonenzymatic phosphorylation of tyrosine and serine by ATP is catalyzed by manganese but not magnesium. J Biol Chem 263:15590–15593

    CAS  PubMed  Google Scholar 

  114. Kantorow M, Piatigorsky J (1994) α-Crystallin/small heat shock protein has autokinase activity. Biochemistry (Mosc) 91:3112–3116

    CAS  Google Scholar 

  115. Kantorow M, Horwitz J, Van Boekel MAM, De Jong WW, Piatigorsky J (1995) Conversion from oligomers to tetramers enhances autophosphorylation by lens αA-crystallin. J Biol Chem 270:17215–17220

    Article  CAS  PubMed  Google Scholar 

  116. White JG, Amos WB, Fordham M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105:41–48

    Article  CAS  PubMed  Google Scholar 

  117. Kamei A, Hamaguchi T, Matsuura N, Masuda K (2001) Does post-translational modification influence chaperone-like activity of α-crystallin? 1. study on phosphorylation. Biol Pharm Bull 24:96–99

    Article  CAS  PubMed  Google Scholar 

  118. Augusteyn RC, Murnane L, Nicola A, Stevens A (2002) Chaperone activity in the lens. Clin Exp Optom 85:83–90

    Article  PubMed  Google Scholar 

  119. Koteiche HA, Mchaourab HS (2003) Mechanism of chaperone function in small heat-shock proteins: phosphorylation-induced activation of two-mode binding in αB-crystallin. J Biol Chem 278:10361–10367

    Article  CAS  PubMed  Google Scholar 

  120. Ito H, Kamei K, Iwamoto I, Inaguma Y, Nohara D, Kato K (2001) Phosphorylation-induced change of the oligomerization state of αB-crystallin. J Biol Chem 276:5346–5352

    Article  CAS  PubMed  Google Scholar 

  121. Kato K, Inaguma Y, Ito H, Iida K, Iwamoto I, Kamei A, Ochi N, Ohta H, Kishikawa M (2001) Ser-59 is the major phosphorylation site of αB-crystallin accumulated in the brains of patients with Alexander’s disease. J Neurochem 76:730–736

    Article  CAS  PubMed  Google Scholar 

  122. Mann E, McDermott MJ, Goldman J, Chiesa R, Spector A (1991) Phosphorylation of α-crystallin B in Alexander’s disease brain. FEBS Lett 294:133–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The help of Heath Ecroyd with the editing of this paper is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Thornell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thornell, E., Aquilina, A. Regulation of αA- and αB-crystallins via phosphorylation in cellular homeostasis. Cell. Mol. Life Sci. 72, 4127–4137 (2015). https://doi.org/10.1007/s00018-015-1996-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1996-x

Keywords

Navigation