Skip to main content
Log in

EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Fibrosis is an inherent response to chronic damage upon immense apoptosis or necrosis. Transforming growth factor-beta1 (TGF-β1) signaling plays a key role in the fibrotic response to chronic liver injury. To develop anti-fibrotic therapeutics, we synthesized a novel small-molecule inhibitor of the TGF-β type I receptor kinase (ALK5), EW-7197, and evaluated its therapeutic potential in carbon tetrachloride (CCl4) mouse, bile duct ligation (BDL) rat, bleomycin (BLM) mouse, and unilateral ureteral obstruction (UUO) mouse models. Western blot, immunofluorescence, siRNA, and ChIP analysis were carried out to characterize EW-7197 as a TGF-β/Smad signaling inhibitor in LX-2, Hepa1c1c7, NRK52E, and MRC5 cells. In vivo anti-fibrotic activities of EW-7197 were examined by microarray, immunohistochemistry, western blotting, and a survival study in the animal models. EW-7197 decreased the expression of collagen, α-smooth muscle actin (α-SMA), fibronectin, 4-hydroxy-2, 3-nonenal, and integrins in the livers of CCl4 mice and BDL rats, in the lungs of BLM mice, and in the kidneys of UUO mice. Furthermore, EW-7197 extended the lifespan of CCl4 mice, BDL rats, and BLM mice. EW-7197 blocked the TGF-β1-stimulated production of reactive oxygen species (ROS), collagen, and α-SMA in LX-2 cells and hepatic stellate cells (HSCs) isolated from mice. Moreover, EW-7197 attenuated TGF-β- and ROS-induced HSCs activation to myofibroblasts as well as extracellular matrix accumulation. The mechanism of EW-7197 appeared to be blockade of both TGF-β1/Smad2/3 and ROS signaling to exert an anti-fibrotic activity. This study shows that EW-7197 has a strong potential as an anti-fibrosis therapeutic agent via inhibition of TGF-β-/Smad2/3 and ROS signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

4-HNE:

4-Hydroxy-2,3-nonenal

α-SMA:

Alpha-smooth muscle actin

ALK5:

Activin receptor-like kinase 5

BDL:

Bile duct ligation

BLM:

Bleomycin

CCl4 :

Carbon tetrachloride

ECM:

Extracellular matrix

EW-7197:

N-[[4-([1,2,4]Triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl]methyl]-2-fluoroaniline

GOx:

Glucose oxidase

HSCs:

Hepatic stellate cells

IHC:

Immunohistochemistry

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

Prdx:

Peroxiredoxin

qRT-PCR:

Quantitative real-time reverse-transcriptase polymerase chain reaction

ROS:

Reactive oxygen species

TGF-β:

Transforming growth factor-beta

UUO:

Unilateral ureteral obstruction

References

  1. Schuppan D, Kim YO (2013) Evolving therapies for liver fibrosis. J Clin Investig 123(5):1887–1901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Desmouliere A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13(1):7–12

    Article  PubMed  Google Scholar 

  4. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275(4):2247–2250

    Article  CAS  PubMed  Google Scholar 

  5. Leask A, Abraham DJ (2004) TGF-β signaling and the fibrotic response. FASEB J 18(7):816–827

    Article  CAS  PubMed  Google Scholar 

  6. Liu R-M, Gaston Pravia K (2010) Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic Biol Med 48(1):1–15

    Article  PubMed Central  PubMed  Google Scholar 

  7. Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  CAS  PubMed  Google Scholar 

  8. Derynck R, Akhurst RJ (2007) Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nat Cell Biol 9(9):1000–1004

    Article  CAS  PubMed  Google Scholar 

  9. Samarakoon R, Overstreet JM, Higgins PJ (2013) TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal 25(1):264–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Akhurst R, Hata A (2012) Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 11:790–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Liu X, Hu H, Yin JQ (2006) Therapeutic strategies against TGF-β signaling pathway in hepatic fibrosis. Liver International 26(1):8–22

    Article  PubMed  Google Scholar 

  12. Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A (2005) Hepatic fibrosis: molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 45:605–628

    Article  CAS  PubMed  Google Scholar 

  13. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, Reese ED, Herbstreith MH, Laping NJ, Friedman HS, Bigner DD, Wang X-F, Rich JN (2004) SB-431542, a small molecule transforming growth factor-β-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3(6):737–745

    CAS  PubMed  Google Scholar 

  15. Byfield SD, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65(3):744–752

    Article  CAS  Google Scholar 

  16. Subramanian G, Schwarz RE, Higgins L, McEnroe G, Chakravarty S, Dugar S, Reiss M (2004) Targeting endogenous transforming growth factor β receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype 1. Cancer Res 64(15):5200–5211

    Article  CAS  PubMed  Google Scholar 

  17. Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY, Almirez R, Mangadu R, Liu Y-W, Platten M, Herrlinger U (2004) SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64(21):7954–7961

    Article  CAS  PubMed  Google Scholar 

  18. Sawyer T (2004) Novel oncogenic protein kinase inhibitors for cancer therapy. Curr Med Chem Anticancer Agents 4(5):449

    Article  CAS  PubMed  Google Scholar 

  19. Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A, Gellibert F (2005) Inhibition of TGF-β signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol 145(2):166–177

    Article  PubMed Central  PubMed  Google Scholar 

  20. Zhou L, McMahon C, Bhagat T, Alencar C, Yu Y, Fazzari M, Sohal D, Heuck C, Gundabolu K, Ng C (2011) Reduced SMAD7 leads to overactivation of TGF-β signaling in MDS that can be reversed by a specific inhibitor of TGF-β receptor I kinase. Cancer Res 71(3):955–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Park C-Y, Son J-Y, Jin CH, Nam J-S, Kim D-K, Sheen YY (2011) EW-7195, a novel inhibitor of ALK5 kinase inhibits EMT and breast cancer metastasis to lung. Eur J Cancer 47(17):2642–2653

    Article  CAS  PubMed  Google Scholar 

  22. Jin CH, Krishnaiah M, Sreenu D, Subrahmanyam V, Rao K, Lee HJ, Park S-J, Park H-J, Lee K, Sheen YY (2014) Discovery of N-((4-([1, 2, 4] triazolo [1, 5-a] pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl) methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type 1 receptor kinase as cancer immunotherapeutic/antifibrotic agent. J Med Chem 57:4213–4238

    Article  CAS  PubMed  Google Scholar 

  23. Taura K, Miura K, Iwaisako K, Österreicher CH, Kodama Y, Penz-Österreicher M, Brenner DA (2010) Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 51(3):1027–1036

    Article  PubMed Central  PubMed  Google Scholar 

  24. Son JY, Park S-Y, Kim S-J, Lee SJ, Park S-A, Kim M-J, Kim SW, Kim D-K, Nam J-S, Sheen YY (2014) EW-7197, a novel ALK-5 kinase inhibitor, potently inhibits breast to lung metastasis. Mol Cancer Ther 0903:2013

    Google Scholar 

  25. Verrecchia F, Mauviel A (2007) Transforming growth factor-beta and fibrosis. World J Gastroenterol 13(22):3056–3062

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Wynn T (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, Pellicoro A, Raschperger E, Betsholtz C, Ruminski PG (2013) Targeting of [alpha] v integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19(12):1617–1624

    Article  CAS  PubMed  Google Scholar 

  28. Poli G (2000) Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med 21(3):49–98

    Article  CAS  PubMed  Google Scholar 

  29. Paik YH, Iwaisako K, Seki E, Inokuchi S, Schnabl B, Österreicher CH, Kisseleva T, Brenner DA (2011) The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91phox mediate hepatic fibrosis in mice. Hepatology 53(5):1730–1741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38(12):1543–1552

    Article  CAS  PubMed  Google Scholar 

  31. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  32. Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward-Sadler H, Gaca MD, Sands E, Suliman I, Trim N, Knorr A (2004) Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 126(7):1795–1808

    Article  CAS  PubMed  Google Scholar 

  33. Popov Y, Sverdlov DY, Sharma AK, Bhaskar KR, Li S, Freitag TL, Lee J, Dieterich W, Melino G, Schuppan D (2011) Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology 140(5):1642–1652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Popov Y, Schuppan D (2009) Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology 50(4):1294–1306

    Article  CAS  PubMed  Google Scholar 

  35. Friedman SL (2010) Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 7(8):425–436

    Article  PubMed  Google Scholar 

  36. Friedman SL, Sheppard D, Duffield JS, Violette S (2013) Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 5(167):167sr161

    Article  Google Scholar 

  37. Basu S (2003) Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology 189(1):113–127

    Article  CAS  PubMed  Google Scholar 

  38. Kim K-Y, Choi I, Kim S-S (2000) Progression of hepatic stellate cell activation is associated with the level of oxidative stress rather than cytokines during CCl4-induced fibrogenesis. Mol Cells 10(3):289–300

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant, which is funded by the Korean government (MEST) (No. 20090093972). We thank Seung Won Kim, Sol-Ji Kim, Jung In Jee, and Min-Kyung Park for technical and administrative support.

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yhun Yhong Sheen.

Additional information

S.-A. Park and M.-J. Kim contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SA., Kim, MJ., Park, SY. et al. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling. Cell. Mol. Life Sci. 72, 2023–2039 (2015). https://doi.org/10.1007/s00018-014-1798-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1798-6

Keywords

Navigation