Skip to main content

Advertisement

Log in

BBS4 directly affects proliferation and differentiation of adipocytes

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

BBS4 is one of several proteins whose defects cause Bardet–Biedl syndrome (BBS), a multi-systemic disorder, manifesting with marked obesity. BBS4 polymorphisms have been associated with common non-syndromic morbid obesity. BBS4 obesity molecular mechanisms, and the role of the BBS4 gene in adipocyte differentiation and function are not entirely known. We now show that Bbs4 plays a direct and essential role in proliferation and adipogenesis: silencing of Bbs4 in 3T3F442A preadipocytes induced accelerated cell division and aberrant differentiation, evident through morphologic studies (light, scanning and transmission electron microscopy), metabolic analyses (fat accumulation, fatty acid profile and lipolysis) and adipogenic markers transcripts (Cebpα, Pparγ, aP2, ADRP, Perilipin). Throughout adipogenesis and when challenged with fat load, Bbs4 silenced cells accumulate significantly more triglycerides than control adipocytes, albeit in smaller (yet greater in number) droplets containing modified fatty acid profiles. Thus, greater fat accumulation in the silenced cells is a consequence of both a higher rate of adipocyte proliferation and of aberrant differentiation leading to augmented aberrant accumulation of fat per cell. Our findings suggest that the BBS obesity might be partly due to a direct role of BBS4 in physiological and pathophysiological mechanisms that underlie adipose tissue formation relevant to obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tobin JL, Beales PL (2007) Bardet–Biedl syndrome: beyond the cilium. Pediatr Nephrol 22:926–936

    Article  PubMed  Google Scholar 

  2. Fan Y, Rahman P, Peddle L, Hefferton D, Gladney N, Moore SJ, Green JS, Parfrey PS, Davidson WS (2004) Bardet–Biedl syndrome 1 genotype and obesity in the Newfoundland population. Int J Obes Relat Metab Disord 28:680–684

    Article  CAS  PubMed  Google Scholar 

  3. Croft JB, Morrell D, Chase CL, Swift M (1995) Obesity in heterozygous carriers of the gene for the Bardet–Biedl syndrome. Am J Med Genet 55:12–15

    Article  CAS  PubMed  Google Scholar 

  4. Benzinou M, Walley A, Lobbens S, Charles MA, Jouret B, Fumeron F, Balkau B, Meyre D, Froguel P (2006) Bardet–Biedl syndrome gene variants are associated with both childhood and adult common obesity in French Caucasians. Diabetes 55:2876–2882

    Article  CAS  PubMed  Google Scholar 

  5. Mykytyn K, Braun T, Carmi R, Haider NB, Searby CC, Shastri M, Beck G, Wright AF, Iannaccone A, Elbedour K, Riise R, Baldi A, Raas-Rothschild A, Gorman SW, Duhl DM, Jacobson SG, Casavant T, Stone EM, Sheffield VC (2001) Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet 28:188–191

    Article  CAS  PubMed  Google Scholar 

  6. Kim JC, Badano JL, Sibold S, Esmail MA, Hill J, Hoskins BE, Leitch CC, Venner K, Ansley SJ, Ross AJ, Leroux MR, Katsanis N, Beales PL (2004) The Bardet–Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 36:462–470

    Article  CAS  PubMed  Google Scholar 

  7. Kulaga HM, Leitch CC, Eichers ER, Badano JL, Lesemann A, Hoskins BE, Lupski JR, Beales PL, Reed RR, Katsanis N (2004) Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet 36:994–998

    Article  CAS  PubMed  Google Scholar 

  8. Mykytyn K, Sheffield VC (2004) Establishing a connection between cilia and Bardet–Biedl Syndrome. Trends Mol Med 10:106–109

    CAS  PubMed  Google Scholar 

  9. Fath MA, Mullins RF, Searby C, Nishimura DY, Wei J, Rahmouni K, Davis RE, Tayeh MK, Andrews M, Yang B, Sigmund CD, Stone EM, Sheffield VC (2005) Mkks-null mice have a phenotype resembling Bardet–Biedl syndrome. Hum Mol Genet 14(9):1109–1118

    CAS  PubMed  Google Scholar 

  10. Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, Yang B, Braun T, Casavant T, Stone EM, Sheffield VC (2004) Bardet–Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci USA 101(23):8664–8669

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Eichers ER, Abd-El-Barr MM, Paylor R, Lewis RA, Bi W, Lin X, Meehan TP, Stockton DW, Wu SM, Lindsay E, Justice MJ, Beales PL, Katsanis N, Lupski JR (2006) Phenotypic characterization of Bbs4 null mice reveals age-dependent penetrance and variable expressivity. Hum Genet 120(2):211–226

    CAS  PubMed  Google Scholar 

  12. Nishimura DY, Fath M, Mullins RF, Searby C, Andrews M, Davis R, Andorf JL, Mykytyn K, Swiderski RE, Yang B, Carmi R, Stone EM, Sheffield VC (2004) Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci USA 101:16588–16593

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Carmi R, Elbedour K, Stone EM, Sheffield VC (1995) Phenotypic differences among patients with Bardet–Biedl syndrome linked to three different chromosome loci. Am J Med Genet 59:199–203

    CAS  PubMed  Google Scholar 

  14. Rahmouni K, Fath MA, Seo S, Thedens DR, Berry CJ, Weiss R, Nishimura DY, Sheffield VC (2008) Leptin resistance contributes to obesity and hypertension in mouse models of Bardet–Biedl syndrome. J Clin Invest 118(4):1458–1467

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Berbari NF, Pasek RC, Malarkey EB, Yazdi SM, McNair AD, Lewis WR, Nagy TR, Kesterson RA, Yoder BK (2013) Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci USA 110(19):7796–7801

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Forti E, Aksanov O, Birk RZ (2007) Temporal expression pattern of Bardet–Biedl syndrome genes in adipogenesis. Int J Biochem Cell Biol 39(5):1055–1062

    CAS  PubMed  Google Scholar 

  17. Marion V, Stoetzel C, Schlicht D, Messaddeq N, Koch M, Flori E, Danse JM, Mandel JL, Dollfus H (2009) Transient ciliogenesis involving Bardet–Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci USA 106(6):1820–1825

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Green H, Kehinde O (1979) Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J Cell Physiol 101(1):169–171

    CAS  PubMed  Google Scholar 

  19. Green H, Meuth M (1974) An established pre-adipose cell line and its differentiation in culture. Cell 3:127–133

    CAS  PubMed  Google Scholar 

  20. Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171

    CAS  PubMed  Google Scholar 

  21. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  22. Hansen JB, Petersen RK, Larsen BM, Bartkova J, Alsner J, Kristiansen K (1999) Activation of peroxisome proliferator-activated receptor gamma bypasses the function of the retinoblastoma protein in adipocyte differentiation. J Biol Chem 274:2386–2393

    CAS  PubMed  Google Scholar 

  23. Kuri-Harcuch W, Arguello C, Marsch-Moreno M (1984) Extracellular matrix production by mouse 3T3-F442A cells during adipose differentiation in culture. Differentiation 28:173–178

    CAS  PubMed  Google Scholar 

  24. Kan I, Melamed E, Offen D, Green P (2007) Docosahexaenoic acid and arachidonic acid are fundamental supplements for the induction of neuronal differentiation. J Lipid Res 48(3):513–517

    CAS  PubMed  Google Scholar 

  25. Bjorntorp P (1974) Size, number and function of adipose tissue cells in human obesity. Horm Metab Res 4:77–83

    PubMed  Google Scholar 

  26. Faust IM, Johnson PR, Stern JS, Hirsch J (1978) Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am J Physiol 235:E279–E286

    CAS  PubMed  Google Scholar 

  27. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ (2001) The biology of white adipocyte proliferation. Obes Rev 2:239–254

    CAS  PubMed  Google Scholar 

  28. Johnson PR, Stern JS, Greenwood MR, Hirsch J (1987) Adipose tissue hyperplasia and hyperinsulinemia in Zucker obese female rats: a developmental study. Metabolism 27:1941–1954

    Google Scholar 

  29. Simons M, Walz G (2006) Polycystic kidney disease: cell division without a c(l)ue? Kidney Int 70(5):854–864

    CAS  PubMed  Google Scholar 

  30. Johnson CA, Gissen P, Sergi C (2003) Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet 40:311–319

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Cornelius P, MacDougald OA, Lane MD (1994) Cellularity of adipose depots in the genetically obese Zucker rat. Annu Rev Nutr 14:99–129

    CAS  PubMed  Google Scholar 

  32. Gregoire F, Todoroff G, Hauser N, Remacle C (1990) The stroma-vascular fraction of rat inguinal and epididymal adipose tissue and the adipoconversion of fat cell precursors in primary culture. Biol Cell 69:215–222

    CAS  PubMed  Google Scholar 

  33. Boroumand M, Miller DS, Wise A (1980) The relative importance of genetics and diet in determining adipocyte number and size in the periovarian fat pad of the rat. Int J Obes 4(1):21–25

    CAS  PubMed  Google Scholar 

  34. Gregoire FM, Smas CM, Sul HS (1988) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    Google Scholar 

  35. Brun RP, Kim JB, Hu E, Altiok S, Spiegelman BM (1996) Adipocyte differentiation: a transcriptional regulatory cascade. Curr Opin Cell Biol 18:826–832

    Google Scholar 

  36. Tang QQ, Zhang JW, Lane DM (2004) Sequential gene promoter interactions of C/EBPbeta, C/EBPalpha, and PPARgamma during adipogenesis. Biochem Biophys Res Commun 319:235–239

    CAS  PubMed  Google Scholar 

  37. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4:585–595

    CAS  PubMed  Google Scholar 

  38. Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM (1999) Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3:151–158

    CAS  PubMed  Google Scholar 

  39. Holst D, Grimaldi PA (2002) New factors in the regulation of adipose differentiation and metabolism. Curr Opin Lipidol 13:241–245

    CAS  PubMed  Google Scholar 

  40. Hunt CR, Ro JH, Dobson DE, Min HY, Spiegelman BM (1986) Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc Natl Acad Sci USA 83:3786–3790

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Coe NR, Simpson MA, Bernlohr DA (1999) Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res 40:967–972

    CAS  PubMed  Google Scholar 

  42. Arimura N, Horiba T, Imagawa M, Shimizu M, Sato R (2004) The peroxisome proliferator-activated receptor gamma regulates expression of the perilipin gene in adipocytes. J Biol Chem 279:10070–10076

    CAS  PubMed  Google Scholar 

  43. Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421–424

    CAS  PubMed  Google Scholar 

  44. Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O, Reitman ML, Deng CX, Li C, Kimmel AR, Londos C (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci USA 98:6494–6499

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Wolins NE, Brasaemle DL, Bickel PE (2006) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–5491

    CAS  PubMed  Google Scholar 

  46. Nakajima I, Yamaguchi T, Ozutsumi K, Aso H (1998) Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation 63:193–200

    CAS  PubMed  Google Scholar 

  47. Motta P (1975) A scanning electron microscopic study of the rat liver sinusoid: endothelial and Kupffer cells. J Microsc Biol Cell 22:15–20

    Google Scholar 

  48. Novikoff AB, Novikoff PM (1982) Microperoxisomes and peroxisomes in relation to lipid metabolism. Ann NY Acad Sci 386:138–152

    CAS  PubMed  Google Scholar 

  49. Novikoff AB, Novikoff PM, Rosen OM, Rubin CS (1980) Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 87:180–196

    CAS  PubMed  Google Scholar 

  50. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512

    CAS  PubMed  Google Scholar 

  51. Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 152:1071–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Green H, Kehinde O (1976) Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell 7:105–113

    CAS  PubMed  Google Scholar 

  53. Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Rydén M, Arner E, Sicard A, Jenkins CM, Viguerie N, van Harmelen V, Gross RW, Holm C, Arner P (2005) Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54(11):3190–3197

    CAS  PubMed  Google Scholar 

  54. Kim YC, Gomez FE, Fox BG, Ntambi JM (2000) Differential regulation of the stearoyl-CoA desaturase genes by thiazolidinediones in 3T3-L1 adipocytes. J Lipid Res 41:1310–1316

    CAS  PubMed  Google Scholar 

  55. Gomez FE, Miyazaki M, Kim YC, Marwah P, Lardy HA, Ntambi JM, Fox BG (2002) Molecular differences caused by differentiation of 3T3-L1 preadipocytes in the presence of either dehydroepiandrosterone (DHEA) or 7-oxo-DHEA. Biochemistry 41:5473–5482

    CAS  PubMed  Google Scholar 

  56. Ntambi JM, Miyazaki M (2004) Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43(2):91–104

    CAS  PubMed  Google Scholar 

  57. Collins JM, Neville MJ, Pinnick KE, Hodson L, Ruyter B, van Dijk TH, Reijngoud DJ, Fielding MD, Frayn KN (2011) De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J Lipid Res 52(9):1683–1692

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Z. Birk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksanov, O., Green, P. & Birk, R.Z. BBS4 directly affects proliferation and differentiation of adipocytes. Cell. Mol. Life Sci. 71, 3381–3392 (2014). https://doi.org/10.1007/s00018-014-1571-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1571-x

Keywords

Navigation