Skip to main content

Advertisement

Log in

Balanced ubiquitination determines cellular responsiveness to extracellular stimuli

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Signal strength evoked by ligand stimulation is crucial for cellular responses such as fate decision, cell survival/death, secretion, and migration. For example, morphogens are secreted signaling molecules that form concentration gradients within tissues and induce distinct cell fates in a signal strength-dependent manner. In addition to extracellular ligand abundance, the sensitivity of signal-receiving cells to ligands also influences signal strength. Cell sensitivity to ligands is controlled at various levels: receptor presentation at the cell surface, positive/negative regulation of signal transduction, and target gene activation/repression. While the regulation of signal transduction and gene transcription is well studied, receptor presentation is still not fully understood. Recently, it was reported that cellular sensitivity to the Wingless (Wg)/Wnt morphogen is regulated by balanced ubiquitination and deubiquitination of its receptor Frizzled (Fz). In this review, we review how ubiquitination regulates receptor presentation at the cell surface for the detection of extracellular signal strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  PubMed  CAS  Google Scholar 

  2. Kornberg TB, Guha A (2007) Understanding morphogen gradients: a problem of dispersion and containment. Curr Opin Genet Dev 17:264–271

    Article  PubMed  CAS  Google Scholar 

  3. Sanchez-Camacho C, Bovolenta P (2009) Emerging mechanisms in morphogen-mediated axon guidance. Bioessays 31:1013–1025

    Article  PubMed  CAS  Google Scholar 

  4. Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44:1–8

    Article  PubMed  CAS  Google Scholar 

  5. Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11:573–587

    Article  PubMed  CAS  Google Scholar 

  6. Wiley HS, Herbst JJ, Walsh BJ, Lauffenburger DA, Rosenfeld MG, Gill GN (1991) The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor. J Biol Chem 266:11083–11094

    PubMed  CAS  Google Scholar 

  7. Chang CP, Lazar CS, Walsh BJ, Komuro M, Collawn JF, Kuhn LA, Tainer JA, Trowbridge IS, Farquhar MG, Rosenfeld MG et al (1993) Ligand-induced internalization of the epidermal growth factor receptor is mediated by multiple endocytic codes analogous to the tyrosine motif found in constitutively internalized receptors. J Biol Chem 268:19312–19320

    PubMed  CAS  Google Scholar 

  8. Resat H, Ewald JA, Dixon DA, Wiley HS (2003) An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys J 85:730–743

    Article  PubMed  CAS  Google Scholar 

  9. Duan L, Miura Y, Dimri M, Majumder B, Dodge IL, Reddi AL, Ghosh A, Fernandes N, Zhou P, Mullane-Robinson K, Rao N, Donoghue S, Rogers RA, Bowtell D, Naramura M, Gu H, Band V, Band H (2003) Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J Biol Chem 278:28950–28960

    Article  PubMed  CAS  Google Scholar 

  10. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  PubMed  CAS  Google Scholar 

  11. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  PubMed  CAS  Google Scholar 

  12. Schulman BA, Harper JW (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10:319–331

    Article  PubMed  CAS  Google Scholar 

  13. Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764

    Article  PubMed  CAS  Google Scholar 

  14. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  PubMed  CAS  Google Scholar 

  15. Verma R, Oania R, Graumann J, Deshaies RJ (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118:99–110

    Article  PubMed  CAS  Google Scholar 

  16. Kim I, Mi K, Rao H (2004) Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol Biol Cell 15:3357–3365

    Article  PubMed  CAS  Google Scholar 

  17. Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84

    Article  PubMed  CAS  Google Scholar 

  18. Rape M, Reddy SK, Kirschner MW (2006) The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124:89–103

    Article  PubMed  CAS  Google Scholar 

  19. Williamson A, Wickliffe KE, Mellone BG, Song L, Karpen GH, Rape M (2009) Identification of a physiological E2 module for the human anaphase-promoting complex. Proc Natl Acad Sci USA 106:18213–18218

    Article  PubMed  CAS  Google Scholar 

  20. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11:123–132

    Article  PubMed  CAS  Google Scholar 

  21. Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758–765

    Article  PubMed  CAS  Google Scholar 

  22. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109

    Article  PubMed  CAS  Google Scholar 

  23. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  PubMed  CAS  Google Scholar 

  24. Sims JJ, Cohen RE (2009) Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol Cell 33:775–783

    Article  PubMed  CAS  Google Scholar 

  25. Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273

    PubMed  CAS  Google Scholar 

  26. Hicke L (1999) Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9:107–112

    Article  PubMed  CAS  Google Scholar 

  27. Polo S, Confalonieri S, Salcini AE, Di Fiore PP (2003) EH and UIM: endocytosis and more. Sci STKE 2003(213):re17

  28. Brooks CL, Li M, Gu W (2004) Monoubiquitination: the signal for p53 nuclear export? Cell Cycle 3:436–438

    PubMed  CAS  Google Scholar 

  29. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5:461–466

    Article  PubMed  CAS  Google Scholar 

  30. Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207

    Article  PubMed  CAS  Google Scholar 

  31. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786

    Article  PubMed  CAS  Google Scholar 

  32. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563

    Article  PubMed  CAS  Google Scholar 

  33. Wilkinson KD, Tashayev VL, O’Connor LB, Larsen CN, Kasperek E, Pickart CM (1995) Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry 34:14535–14546

    Article  PubMed  CAS  Google Scholar 

  34. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397

    Article  PubMed  CAS  Google Scholar 

  35. Acconcia F, Sigismund S, Polo S (2009) Ubiquitin in trafficking: the network at work. Exp Cell Res 315:1610–1618

    Article  PubMed  CAS  Google Scholar 

  36. Komada M (2008) Controlling receptor downregulation by ubiquitination and deubiquitination. Curr Drug Discov Technol 5:78–84

    Article  PubMed  CAS  Google Scholar 

  37. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452

    Article  PubMed  CAS  Google Scholar 

  38. Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287

    Article  PubMed  CAS  Google Scholar 

  39. Kolling R, Hollenberg CP (1994) The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J 13:3261–3271

    PubMed  CAS  Google Scholar 

  40. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21:737–748

    Article  PubMed  CAS  Google Scholar 

  41. Huang F, Goh LK, Sorkin A (2007) EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci USA 104:16904–16909

    Article  PubMed  CAS  Google Scholar 

  42. Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S (2005) Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 102:2760–2765

    Article  PubMed  CAS  Google Scholar 

  43. Goh LK, Huang F, Kim W, Gygi S, Sorkin A (2010) Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol 189:871–883

    Article  PubMed  CAS  Google Scholar 

  44. Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M (2005) Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell 16:5163–5174

    Article  PubMed  CAS  Google Scholar 

  45. Row PE, Prior IA, McCullough J, Clague MJ, Urbe S (2006) The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J Biol Chem 281:12618–12624

    Article  PubMed  CAS  Google Scholar 

  46. Bowers K, Piper SC, Edeling MA, Gray SR, Owen DJ, Lehner PJ, Luzio JP (2006) Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J Biol Chem 281:5094–5105

    Article  PubMed  CAS  Google Scholar 

  47. Kyuuma M, Kikuchi K, Kojima K, Sugawara Y, Sato M, Mano N, Goto J, Takeshita T, Yamamoto A, Sugamura K, Tanaka N (2007) AMSH, an ESCRT-III associated enzyme, deubiquitinates cargo on MVB/late endosomes. Cell Struct Funct 31:159–172

    Article  PubMed  Google Scholar 

  48. Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. ChemMedChem 1:761–782

    Article  PubMed  CAS  Google Scholar 

  49. Fredholm BB, Hokfelt T, Milligan G (2007) G-protein-coupled receptors: an update. Acta Physiol (Oxf) 190:3–7

    Article  CAS  Google Scholar 

  50. Chen L, Davis NG (2002) Ubiquitin-independent entry into the yeast recycling pathway. Traffic 3:110–123

    Article  PubMed  CAS  Google Scholar 

  51. Obin MS, Jahngen-Hodge J, Nowell T, Taylor A (1996) Ubiquitinylation and ubiquitin-dependent proteolysis in vertebrate photoreceptors (rod outer segments). Evidence for ubiquitinylation of Gt and rhodopsin. J Biol Chem 271:14473–14484

    Article  PubMed  CAS  Google Scholar 

  52. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  PubMed  CAS  Google Scholar 

  53. Marchese A, Benovic JL (2001) Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 276:45509–45512

    Article  PubMed  CAS  Google Scholar 

  54. Martin NP, Lefkowitz RJ, Shenoy SK (2003) Regulation of V2 vasopressin receptor degradation by agonist-promoted ubiquitination. J Biol Chem 278:45954–45959

    Article  PubMed  CAS  Google Scholar 

  55. Jacob C, Cottrell GS, Gehringer D, Schmidlin F, Grady EF, Bunnett NW (2005) c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J Biol Chem 280:16076–16087

    Article  PubMed  CAS  Google Scholar 

  56. Cottrell GS, Padilla B, Pikios S, Roosterman D, Steinhoff M, Gehringer D, Grady EF, Bunnett NW (2006) Ubiquitin-dependent down-regulation of the neurokinin-1 receptor. J Biol Chem 281:27773–27783

    Article  PubMed  CAS  Google Scholar 

  57. Li JG, Haines DS, Liu-Chen LY (2008) Agonist-promoted Lys63-linked polyubiquitination of the human kappa-opioid receptor is involved in receptor down-regulation. Mol Pharmacol 73:1319–1330

    Article  PubMed  CAS  Google Scholar 

  58. Wolfe BL, Marchese A, Trejo J (2007) Ubiquitination differentially regulates clathrin-dependent internalization of protease-activated receptor-1. J Cell Biol 177:905–916

    Article  PubMed  CAS  Google Scholar 

  59. Tanowitz M, Von Zastrow M (2002) Ubiquitination-independent trafficking of G protein-coupled receptors to lysosomes. J Biol Chem 277:50219–50222

    Article  PubMed  CAS  Google Scholar 

  60. Henry AG, White IJ, Marsh M, von Zastrow M, Hislop JN (2011) The role of ubiquitination in lysosomal trafficking of delta-opioid receptors. Traffic 12:170–184

    Article  PubMed  CAS  Google Scholar 

  61. Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM (2008) Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor. J Biol Chem 283:22166–22176

    Article  PubMed  CAS  Google Scholar 

  62. Nabhan JF, Pan H, Lu Q (2010) Arrestin domain-containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the beta2-adrenergic receptor. EMBO Rep 11:605–611

    Article  PubMed  CAS  Google Scholar 

  63. Marchese A, Raiborg C, Santini F, Keen JH, Stenmark H, Benovic JL (2003) The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev Cell 5:709–722

    Article  PubMed  CAS  Google Scholar 

  64. Bhandari D, Robia SL, Marchese A (2009) The E3 ubiquitin ligase atrophin interacting protein 4 binds directly to the chemokine receptor CXCR4 via a novel WW domain-mediated interaction. Mol Biol Cell 20:1324–1339

    Article  PubMed  CAS  Google Scholar 

  65. Bhandari D, Trejo J, Benovic JL, Marchese A (2007) Arrestin-2 interacts with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. J Biol Chem 282:36971–36979

    Article  PubMed  CAS  Google Scholar 

  66. Hislop JN, Henry AG, Marchese A, von Zastrow M (2009) Ubiquitination regulates proteolytic processing of G protein-coupled receptors after their sorting to lysosomes. J Biol Chem 284:19361–19370

    Article  PubMed  CAS  Google Scholar 

  67. Dupre DJ, Chen Z, Le Gouill C, Theriault C, Parent JL, Rola-Pleszczynski M, Stankova J (2003) Trafficking, ubiquitination, and down-regulation of the human platelet-activating factor receptor. J Biol Chem 278:48228–48235

    Article  PubMed  CAS  Google Scholar 

  68. Berthouze M, Venkataramanan V, Li Y, Shenoy SK (2009) The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization. EMBO J 28:1684–1696

    Article  PubMed  CAS  Google Scholar 

  69. Mines MA, Goodwin JS, Limbird LE, Cui FF, Fan GH (2009) Deubiquitination of CXCR4 by USP14 is critical for both CXCL12-induced CXCR4 degradation and chemotaxis but not ERK ativation. J Biol Chem 284:5742–5752

    Article  PubMed  CAS  Google Scholar 

  70. Hasdemir B, Murphy JE, Cottrell GS, Bunnett NW (2009) Endosomal deubiquitinating enzymes control ubiquitination and down-regulation of protease-activated receptor 2. J Biol Chem 284:28453–28466

    Article  PubMed  CAS  Google Scholar 

  71. Berlin I, Higginbotham KM, Dise RS, Sierra MI, Nash PD (2010) The deubiquitinating enzyme USP8 promotes trafficking and degradation of the chemokine receptor 4 at the sorting endosome. J Biol Chem 285:37895–37908

    Article  PubMed  CAS  Google Scholar 

  72. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed  CAS  Google Scholar 

  73. Weinmaster G, Fischer JA (2011) Notch ligand ubiquitylation: what is it good for? Dev Cell 21:134–144

    Article  PubMed  CAS  Google Scholar 

  74. Le Bras S, Loyer N, Le Borgne R (2011) The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic 12:149–161

    Article  PubMed  CAS  Google Scholar 

  75. Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 5:197–206

    Article  PubMed  CAS  Google Scholar 

  76. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israel A (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5:207–216

    Article  PubMed  CAS  Google Scholar 

  77. Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393:382–386

    Article  PubMed  CAS  Google Scholar 

  78. Okochi M, Steiner H, Fukumori A, Tanii H, Tomita T, Tanaka T, Iwatsubo T, Kudo T, Takeda M, Haass C (2002) Presenilins mediate a dual intramembranous gamma-secretase cleavage of Notch-1. EMBO J 21:5408–5416

    Article  PubMed  CAS  Google Scholar 

  79. Seugnet L, Simpson P, Haenlin M (1997) Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev Biol 192:585–598

    Article  PubMed  CAS  Google Scholar 

  80. Vaccari T, Lu H, Kanwar R, Fortini ME, Bilder D (2008) Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J Cell Biol 180:755–762

    Article  PubMed  CAS  Google Scholar 

  81. Lu H, Bilder D (2005) Endocytic control of epithelial polarity and proliferation in Drosophila. Nat Cell Biol 7:1232–1239

    Article  PubMed  CAS  Google Scholar 

  82. Vaccari T, Duchi S, Cortese K, Tacchetti C, Bilder D (2010) The vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor. Development 137:1825–1832

    Article  PubMed  CAS  Google Scholar 

  83. Yan Y, Denef N, Schupbach T (2009) The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 17:387–402

    Article  PubMed  CAS  Google Scholar 

  84. Gupta-Rossi N, Six E, LeBail O, Logeat F, Chastagner P, Olry A, Israel A, Brou C (2004) Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. J Cell Biol 166:73–83

    Article  PubMed  CAS  Google Scholar 

  85. Tagami S, Okochi M, Yanagida K, Ikuta A, Fukumori A, Matsumoto N, Ishizuka-Katsura Y, Nakayama T, Itoh N, Jiang J, Nishitomi K, Kamino K, Morihara T, Hashimoto R, Tanaka T, Kudo T, Chiba S, Takeda M (2008) Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol 28:165–176

    Article  PubMed  CAS  Google Scholar 

  86. Moberg KH, Schelble S, Burdick SK, Hariharan IK (2005) Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell 9:699–710

    Article  PubMed  CAS  Google Scholar 

  87. Thompson BJ, Mathieu J, Sung HH, Loeser E, Rorth P, Cohen SM (2005) Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell 9:711–720

    Article  PubMed  CAS  Google Scholar 

  88. Vaccari T, Bilder D (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell 9:687–698

    Article  PubMed  CAS  Google Scholar 

  89. Herz HM, Chen Z, Scherr H, Lackey M, Bolduc C, Bergmann A (2006) vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development 133:1871–1880

    Article  PubMed  CAS  Google Scholar 

  90. Childress JL, Acar M, Tao C, Halder G (2006) Lethal giant discs, a novel C2-domain protein, restricts notch activation during endocytosis. Curr Biol 16:2228–2233

    Article  PubMed  CAS  Google Scholar 

  91. Gallagher CM, Knoblich JA (2006) The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev Cell 11:641–653

    Article  PubMed  CAS  Google Scholar 

  92. Jaekel R, Klein T (2006) The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell 11:655–669

    Article  PubMed  CAS  Google Scholar 

  93. Hori K, Fostier M, Ito M, Fuwa TJ, Go MJ, Okano H, Baron M, Matsuno K (2004) Drosophila Deltex mediates Suppressor of Hairless-independent and late-endosomal activation of Notch signaling. Development 131:5527–5537

    Article  PubMed  CAS  Google Scholar 

  94. Fuwa TJ, Hori K, Sasamura T, Higgs J, Baron M, Matsuno K (2006) The first deltex null mutant indicates tissue-specific deltex-dependent Notch signaling in Drosophila. Mol Genet Genomics 275:251–263

    Article  PubMed  CAS  Google Scholar 

  95. Jehn BM, Dittert I, Beyer S, von der Mark K, Bielke W (2002) c-Cbl binding and ubiquitin-dependent lysosomal degradation of membrane-associated Notch1. J Biol Chem 277:8033–8040

    Article  PubMed  CAS  Google Scholar 

  96. Wang Y, Chen Z, Bergmann A (2010) Regulation of EGFR and Notch signaling by distinct isoforms of D-cbl during Drosophila development. Dev Biol 342:1–10

    Article  PubMed  CAS  Google Scholar 

  97. Fostier M, Evans DA, Artavanis-Tsakonas S, Baron M (1998) Genetic characterization of the Drosophila melanogaster Suppressor of deltex gene: a regulator of notch signaling. Genetics 150:1477–1485

    PubMed  CAS  Google Scholar 

  98. Chastagner P, Israel A, Brou C (2008) AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS One 3:e2735

    Article  PubMed  CAS  Google Scholar 

  99. Qiu L, Joazeiro C, Fang N, Wang HY, Elly C, Altman Y, Fang D, Hunter T, Liu YC (2000) Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J Biol Chem 275:35734–35737

    Article  PubMed  CAS  Google Scholar 

  100. Sakata T, Sakaguchi H, Tsuda L, Higashitani A, Aigaki T, Matsuno K, Hayashi S (2004) Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr Biol 14:2228–2236

    Article  PubMed  CAS  Google Scholar 

  101. Wilkin MB, Carbery AM, Fostier M, Aslam H, Mazaleyrat SL, Higgs J, Myat A, Evans DA, Cornell M, Baron M (2004) Regulation of notch endosomal sorting and signaling by Drosophila Nedd4 family proteins. Curr Biol 14:2237–2244

    Article  PubMed  CAS  Google Scholar 

  102. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  103. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  104. Couso JP, Bishop SA, Martinez Arias A (1994) The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development 120:621–636

    PubMed  CAS  Google Scholar 

  105. Zecca M, Basler K, Struhl G (1996) Direct and long-range action of a wingless morphogen gradient. Cell 87:833–844

    Article  PubMed  CAS  Google Scholar 

  106. Neumann CJ, Cohen SM (1997) Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124:871–880

    PubMed  CAS  Google Scholar 

  107. Schulte G, Bryja V (2007) The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 28:518–525

    Article  PubMed  CAS  Google Scholar 

  108. Muller P, Schier AF (2011) Extracellular movement of signaling molecules. Dev Cell 21:145–158

    Article  PubMed  CAS  Google Scholar 

  109. Cadigan KM, Fish MP, Rulifson EJ, Nusse R (1998) Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93:767–777

    Article  PubMed  CAS  Google Scholar 

  110. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R, Lefkowitz RJ (2003) Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301:1391–1394

    Article  PubMed  CAS  Google Scholar 

  111. Yamamoto H, Komekado H, Kikuchi A (2006) Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell 11:213–223

    Article  PubMed  CAS  Google Scholar 

  112. Yu A, Rual JF, Tamai K, Harada Y, Vidal M, He X, Kirchhausen T (2007) Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev Cell 12:129–141

    Article  PubMed  CAS  Google Scholar 

  113. Purvanov V, Koval A, Katanaev VL (2010) A direct and functional interaction between Go and Rab5 during G protein-coupled receptor signaling. Sci Signal 3:ra65

    Google Scholar 

  114. Mukai A, Yamamoto-Hino M, Awano W, Watanabe W, Komada M, Goto S (2010) Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. EMBO J 29:2114–2125

    Article  PubMed  CAS  Google Scholar 

  115. Berndt JD, Aoyagi A, Yang P, Anastas JN, Tang L, Moon RT (2011) Mindbomb 1, an E3 ubiquitin ligase, forms a complex with RYK to activate Wnt/beta-catenin signaling. J Cell Biol 194:737–750

    Article  PubMed  Google Scholar 

  116. Lyu J, Yamamoto V, Lu W (2008) Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev Cell 15:773–780

    Article  PubMed  CAS  Google Scholar 

  117. Kowalski JR, Dahlberg CL, Juo P (2011) The deubiquitinating enzyme USP-46 negatively regulates the degradation of glutamate receptors to control their abundance in the ventral nerve cord of Caenorhabditis elegans. J Neurosci 31:1341–1354

    Article  PubMed  CAS  Google Scholar 

  118. Lin A, Hou Q, Jarzylo L, Amato S, Gilbert J, Shang F, Man HY (2011) Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking. J Neurochem 119:27–39

    Article  PubMed  CAS  Google Scholar 

  119. Nakamura M, Tanaka N, Kitamura N, Komada M (2006) Clathrin anchors deubiquitinating enzymes, AMSH and AMSH-like protein, on early endosomes. Genes Cells 11:593–606

    Article  PubMed  CAS  Google Scholar 

  120. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, Kipps TJ, Corr M, Carson DA (2004) Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 101:3118–3123

    Article  PubMed  CAS  Google Scholar 

  121. Cai J, Crotty TM, Reichert E, Carraway KL 3rd, Stafforini DM, Topham MK (2010) Diacylglycerol kinase delta and protein kinase C(alpha) modulate epidermal growth factor receptor abundance and degradation through ubiquitin-specific protease 8. J Biol Chem 285:6952–6959

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to SG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Goto.

Additional information

A. Mukai and M. Yamamoto-Hino contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukai, A., Yamamoto-Hino, M., Komada, M. et al. Balanced ubiquitination determines cellular responsiveness to extracellular stimuli. Cell. Mol. Life Sci. 69, 4007–4016 (2012). https://doi.org/10.1007/s00018-012-1084-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1084-4

Keywords

Navigation