Skip to main content
Log in

Emergence of symmetric protein architecture from a simple peptide motif: evolutionary models

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Structural symmetry is observed in the majority of fundamental protein folds and gene duplication and fusion evolutionary processes are postulated to be responsible. However, convergent evolution leading to structural symmetry has also been proposed; additionally, there is debate regarding the extent to which exact primary structure symmetry is compatible with efficient protein folding. Issues of symmetry in protein evolution directly impact strategies for de novo protein design as symmetry can substantially simplify the design process. Additionally, when considering gene duplication and fusion in protein evolution, there are two competing models: “emergent architecture” and “conserved architecture”. Recent experimental work has shed light on both the evolutionary process leading to symmetric protein folds as well as the ability of symmetric primary structure to efficiently fold. Such studies largely support a “conserved architecture” evolutionary model, suggesting that complex protein architecture was an early evolutionary achievement involving oligomerization of smaller polypeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M (2002) A question of size: the eukaryotic proteome and problems in defining it. Nucleic Acids Res 30:1083–1090

    Article  PubMed  CAS  Google Scholar 

  2. Schad E, Tompa P, Hegyi H (2011) The relationship between proteome size, structural disorder and organism complexity. Genome Biol 12:R120

    Article  PubMed  CAS  Google Scholar 

  3. Thornton JM, Orengo CA, Todd AE, Pearl FM (1999) Protein folds, functions and evolution. J Mol Biol 293(2):333–342

    Article  PubMed  CAS  Google Scholar 

  4. McLachlan AD (1972) Gene duplication in carp muscle calcium binding protein. Nat New Biol 240(98):83–85

    PubMed  CAS  Google Scholar 

  5. McLachlan AD (1976) Evidence for gene duplication in collagen. J Mol Biol 107(2):159–174

    Article  PubMed  CAS  Google Scholar 

  6. McLachlan AD, Walker JE (1977) Evolution of serum albumin. J Mol Biol 112(4):543–558

    Article  PubMed  CAS  Google Scholar 

  7. Tang J, James MN, Hsu IN, Jenkins JA, Blundell TL (1978) Structural evidence for gene duplication in the evolution of the acid proteases. Nature 271:618–621

    Article  PubMed  CAS  Google Scholar 

  8. McLachlan AD (1979) Three-fold structural pattern in the soybean trypsin inhibitor (Kunitz). J Mol Biol 133:557–563

    Article  PubMed  CAS  Google Scholar 

  9. McLachlan AD (1979) Gene duplications in the structural evolution of chymotrypsin. J Mol Biol 128:49–79

    Article  PubMed  CAS  Google Scholar 

  10. McLachlan AD (1980) Repeated structure and possible gene duplications in high potential iron protein and rubredoxin. J Mol Evol 15(4):309–315

    Article  PubMed  CAS  Google Scholar 

  11. Lang D, Thoma R, Henn-Sax M, Sterner R, Wilmanns M (2000) Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289(5484):1546–1550

    Article  PubMed  CAS  Google Scholar 

  12. Hocker B, Schmidt S, Sterner R (2002) A common evolutionary origin of two elementary enzyme folds. FEBS Lett 510(3):133–135

    Article  PubMed  CAS  Google Scholar 

  13. Soding J, Lupas AN (2003) More than the sum of their parts: on the evolution of proteins from peptides. Bioessays 25:837–846

    Article  PubMed  Google Scholar 

  14. Carvalho AL, Dias FM, Prates JA, Nagy T, Gilbert HJ, Davies GJ, Ferreira LM, Romão MJ, Fontes CM (2003) Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proc Nat Acad Sci USA 100:13809–13814

    Article  PubMed  CAS  Google Scholar 

  15. Jeltsch A (1999) Circular permutations the molecular evolution of DNA methyltransferases. J Mol Evol 49:161–164

    Article  PubMed  CAS  Google Scholar 

  16. Peisajovich SG, Rockah L, Tawfik DS (2006) Evolution of new protein topologies through multistep gene rearrangements. Nat Genet 38:168–174

    Article  PubMed  CAS  Google Scholar 

  17. Bjorklund AK, Ekman D, Elofsson A (2006) Expansion of protein domain repeats. PLoS One 2:959–969

    Google Scholar 

  18. Nacher JC, Hayashida M, Akutsu T (2010) The role of internal duplication in the evolution of multi-domain proteins. Biosystems 101:127–135

    Article  PubMed  CAS  Google Scholar 

  19. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  20. Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438:878–881

    Article  PubMed  CAS  Google Scholar 

  21. Yadid I, Tawfik DS (2011) Functional β-propeller lectins by tandem duplications of repetitive units. Prot Eng Des Sel 24(1–2):185–195

    Article  CAS  Google Scholar 

  22. Borgia MB, Borgia A, Best RB, Steward A, Nettels D, Wunderlich BS, Schuler B, Clarke J (2011) Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474:662–665

    Article  PubMed  CAS  Google Scholar 

  23. Mukhopadhyay D (2000) The molecular evolutionary history of a winged bean α-chymotrypsin inhibitor and modeling of its mutations through structural analysis. J Mol Evol 50:214–223

    PubMed  CAS  Google Scholar 

  24. Ponting CP, Russell RB (2000) Identification of distant homologues of fibroblast growth factors suggests a common ancestor for all beta-trefoil proteins. J Mol Biol 302:1041–1047

    Article  PubMed  CAS  Google Scholar 

  25. Liu L, Iwata K, Yohda M, Miki K (2002) Structural insight into gene duplication, gene fusion and domain swapping in the evolution of PLP-independent amino acid racemases. FEBS Lett 528:114–118

    Article  PubMed  CAS  Google Scholar 

  26. Yadid I, Tawfik DS (2007) Reconstruction of functional β-propeller lectins via homo-oligomeric assembly of shorter fragments. J Mol Biol 365:10–17

    Article  PubMed  CAS  Google Scholar 

  27. Akanuma S, Matsuba T, Ueno E, Umeda N, Yamagishi A (2010) Mimicking the evolution of a thermally stable monomeric four-helix bundle by fusion of four identical single-helix peptides. J Biochem 147:371–379

    Article  PubMed  CAS  Google Scholar 

  28. Richter M, Bosnali M, Carstensen L, Seitz T, Durchschlag H, Blanquart S, Merkl R, Sterner R (2010) Computational and experimental evidence for the evolution of a (βα)8-barrel protein from an ancestral quarter-barrel stabilized by disulfide bonds. J Mol Biol 398:763–773

    Article  PubMed  CAS  Google Scholar 

  29. Lee J, Blaber M (2011) Experimental support for the evolution of symmetric protein architecture from a simple peptide motif. Proc Nat Acad Sci USA 108:126–130

    Article  PubMed  CAS  Google Scholar 

  30. Yadid I, Kirshenbaum N, Sharon M, Dym O, Tawfik DS (2010) Metamorphic proteins mediate evolutionary transitions of structure. Proc Nat Acad Sci USA 107:7287–7292

    Article  PubMed  CAS  Google Scholar 

  31. Banner DW, Bloomer A, Petsko GA, Phillips DC, Wilson IA (1976) Atomic coordinates for triose phosphate isomerase from chicken. Biochem Biophys Res Commun 72(1):146–155

    Article  PubMed  CAS  Google Scholar 

  32. Lesk AM, Branden CL, Chothia C (1989) Structural principles of alpha/beta barrel proteins: the packing of the interior of the sheet. Proteins 5(2):139–148

    Article  PubMed  CAS  Google Scholar 

  33. Reardon D, Farber GK (1995) The structure and evolution of α/β barrel proteins. FASEB J 9:497–503

    PubMed  CAS  Google Scholar 

  34. Luger K, Hommel U, Herold M, Hofsteenge J, Kirschner K (1989) Correct folding of circularly permuted variants of a βα barrel enzyme in vivo. Science 243:206–210

    Article  PubMed  CAS  Google Scholar 

  35. Eder J, Kirschner K (1992) Stable substructures of eightfold βα-barrel proteins: fragment complementation of phosphoribosylanthranilate isomerase. Biochemistry 31:3617–3625

    Article  PubMed  CAS  Google Scholar 

  36. Henn-Sax M, Hocker B, Wilmanns M, Sterner R (2001) Divergent evolution of (βα)8-barrel enzymes. Biol Chem 382:1315–1320

    Article  PubMed  CAS  Google Scholar 

  37. Seitz T, Bocola M, Claren J, Sterner R (2007) Stabilization of a (beta-alpha)8-barrel protein designed from identical half barrels. J Mol Biol 372:114–129

    Article  PubMed  CAS  Google Scholar 

  38. Akanuma S, Yamagishi A (2008) Experimental evidence for the existence of a stable half-barrel subdomain in the (β/α)8-barrel fold. J Molec Biol 382:458–466

    Article  PubMed  CAS  Google Scholar 

  39. Blow DM, Janin J, Sweet RM (1974) Mode of action of soybean trypsin inhibitor (Kunitz) as a model for specific protein–protein interactions. Nature 249:54–57

    Article  PubMed  CAS  Google Scholar 

  40. Sweet RM, Wright HT, Janin J, Chothia CH, Blow DM (1974) Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6 angstrom resolution. Biochemistry 13:4212–4228

    Article  PubMed  CAS  Google Scholar 

  41. Rutenber E, Ready M, Robertus JD (1987) Structure and evolution of ricin B chain. Nature 326:624–626

    Article  PubMed  CAS  Google Scholar 

  42. Feng J, Li M, Huang Y, Xiao Y (2010) Symmetric key structural residues in symmetric proteins with beta-trefoil fold. PLoS One 5:e14138. doi:10.1371/journal.pone.0014138

    Article  PubMed  CAS  Google Scholar 

  43. Brych SR, Blaber SI, Logan TM, Blaber M (2001) Structure and stability effects of mutations designed to increase the primary sequence symmetry within the core region of a β-trefoil. Protein Sci 10:2587–2599

    Article  PubMed  CAS  Google Scholar 

  44. Brych SR, Kim J, Logan TM, Blaber M (2003) Accommodation of a highly symmetric core within a symmetric protein superfold. Protein Sci 12:2704–2718

    Article  PubMed  CAS  Google Scholar 

  45. Brych SR, Dubey VK, Bienkiewicz E, Lee J, Logan TM, Blaber M (2004) Symmetric primary and tertiary structure mutations within a symmetric superfold: a solution, not a constraint, to achieve a foldable polypeptide. J Mol Biol 344(3):769–780

    Article  PubMed  CAS  Google Scholar 

  46. Dubey VK, Lee J, Blaber M (2005) Redesigning symmetry-related “mini-core” regions of FGF-1 to increase primary structure symmetry: thermodynamic and functional consequences of structural symmetry. Protein Sci Publ Protein Soc 14(9):2315–2323

    CAS  Google Scholar 

  47. Lee J, Blaber SI, Dubey VK, Blaber M (2011) A polypeptide “building block” for the β-trefoil fold identified by “top-down symmetric deconstruction”. J Mol Biol 407:744–763

    Article  PubMed  CAS  Google Scholar 

  48. Broom A, Doxey AC, Lobsanov YD, Berthin LG, Rose DR, Howell PL, McConkey BJ, Meiering EM (2012) Modular evolution and the origins of symmetry: reconstruction of a three-fold symmetric globular protein. Structure 20:1–11

    Article  Google Scholar 

  49. Murzin AG, Lesk AM, Chothia C (1992) β-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1β and 1β and fibroblast growth factors. J Mol Biol 223:531–543

    Article  PubMed  CAS  Google Scholar 

  50. Blaber M, DiSalvo J, Thomas KA (1996) X-ray crystal structure of human acidic fibroblast growth factor. Biochemistry 35:2086–2094

    Article  PubMed  CAS  Google Scholar 

  51. Chaudhuri I, Soding J, Lupas AN (2008) Evolution of the β-propeller fold. Proteins 71:795–803

    Article  PubMed  CAS  Google Scholar 

  52. Kostlánová N, Mitchell EP, Lortat-Jacob H, Oscarson S, Lahmann M, Gilboa-Garber N, Chambat G, Wimmerová M, Imberty A (2005) The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J Biol Chem 280:27839–27849

    Article  PubMed  Google Scholar 

  53. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Google Scholar 

  54. Blaber M, Lee J (2012) Designing proteins from simple motifs: opportunities in top-down symmetric deconstruction. Curr Opin Structural Biol. doi:10.1016/j.sbi.2012.05.008

    Google Scholar 

  55. Nikkhah M, Jawad-Alami Z, Demydchuk M, Ribbons D, Paoli M (2006) Engineering of β-propeller protein scaffolds by multiple gene duplication and fusion of an idealized WD repeat. Biomol Eng 23:185–194

    Article  PubMed  CAS  Google Scholar 

  56. Alsenaidy MA, Wang T, Kim JH, Joshi SB, Lee J, Blaber M, Volkin DB, Middaugh CR (2012) An empirical phase diagram approach to investigate conformational stability of “second-generation” functional mutants of acidic fibroblast growth factor (FGF-1). Protein Sci Publ Protein Soc 21(3):418–432

    CAS  Google Scholar 

  57. Beadle BM, Shoichet BK (2002) Structural basis of stability: function tradeoffs in enzymes. J Mol Biol 321:285–296

    Article  PubMed  CAS  Google Scholar 

  58. Tokuriki N, Stricher F, Serrano L, Tawfik DS (2008) How protein stability and new functions trade off. PLoS Comput Biol 4(2):e1000002. doi:10.1371/journal.pcbi.1000002

    Article  PubMed  Google Scholar 

  59. Hocker B, Beismann-Driemeyer S, Hettwer S, Lustig A, Sterner R (2001) Dissection of a (βα)8-barrel enzyme into two folded halves. Nat Struct Biol 8:32–36

    Article  PubMed  CAS  Google Scholar 

  60. Hocker B, Claren J, Sterner R (2004) Mimicking enzyme evolution by generating new (beta-alpha)8-barrels from (beta-alpha)4-half-barrels. Proc Nat Acad Sci USA 101:16448–16453

    Article  PubMed  Google Scholar 

  61. Hocker B, Lochner A, Seitz T, Claren J, Sterner R (2009) High-resolution crystal structure of an artificial (betaalpha)(8)-barrel protein designed from identical half-barrels. Biochemistry 48(6):1145–1147. doi:10.1021/bi802125b

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Blaber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaber, M., Lee, J. & Longo, L. Emergence of symmetric protein architecture from a simple peptide motif: evolutionary models. Cell. Mol. Life Sci. 69, 3999–4006 (2012). https://doi.org/10.1007/s00018-012-1077-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1077-3

Keywords

Navigation