Skip to main content

Advertisement

Log in

Regulation of iron homeostasis by microRNAs

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Iron homeostasis is maintained at the cellular and systemic levels to assure adequate iron supply while preventing iron overload. The identification of genes mutated in patients with iron-related disorders or animal models with imbalances of iron homeostasis gave insight into the molecular mechanisms underlying processes critical for balancing iron levels, such as iron uptake, storage, export, and monitoring of available iron. MicroRNAs control genes involved in some of these processes adding an additional level of complexity to the regulation of iron metabolism. This review summarizes recent advances how miRNAs regulate iron homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26:775–783

    Article  PubMed  CAS  Google Scholar 

  2. Saini HK, Griffiths-Jones S, Enright AJ (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 104:17719–17724

    Article  PubMed  CAS  Google Scholar 

  3. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  4. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    Article  PubMed  CAS  Google Scholar 

  5. Griffiths-Jones S, Saini HK, van DS, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  6. Sun W, Julie Li YS, Huang HD, Shyy JY, Chien S (2010) microRNA: a master regulator of cellular processes for bioengineering systems 1. Annu Rev Biomed Eng 12:1–27

    Article  PubMed  CAS  Google Scholar 

  7. Bushati N, Cohen SM (2008) MicroRNAs in neurodegeneration 2. Curr Opin Neurobiol 18:292–296

    Article  PubMed  CAS  Google Scholar 

  8. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39:373–384

    Article  PubMed  CAS  Google Scholar 

  9. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61

    Article  PubMed  CAS  Google Scholar 

  10. Bartley AN, Yao H, Barkoh BA, Ivan C, Mishra BM, Rashid A, Calin GA, Luthra R, Hamilton SR (2011) Complex patterns of altered MicroRNA expression during the adenoma-adenocarcinoma sequence for microsatellite-stable colorectal cancer. Clin Cancer Res 17:7283–7293

    Article  PubMed  CAS  Google Scholar 

  11. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets 2. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  12. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA et al (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395

    Article  PubMed  CAS  Google Scholar 

  13. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di CF et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357

    Article  PubMed  CAS  Google Scholar 

  14. Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J et al (2011) An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147:370–381

    Article  PubMed  CAS  Google Scholar 

  15. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  PubMed  CAS  Google Scholar 

  16. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369

    Article  PubMed  CAS  Google Scholar 

  17. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  PubMed  CAS  Google Scholar 

  18. Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4:e5279

    Article  PubMed  Google Scholar 

  19. Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N (2003) Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem Biophys Res Commun 304:184–190

    Article  PubMed  CAS  Google Scholar 

  20. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  PubMed  CAS  Google Scholar 

  21. Gregory RI, Chendrimada TP, Shiekhattar R (2006) MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol 342:33–47

    PubMed  CAS  Google Scholar 

  22. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    PubMed  CAS  Google Scholar 

  23. Faller M, Matsunaga M, Yin S, Loo JA, Guo F (2007) Heme is involved in microRNA processing. Nat Struct Mol Biol 14:23–29

    Article  PubMed  CAS  Google Scholar 

  24. Barr I, Smith AT, Senturia R, Chen Y, Scheidemantle BD, Burstyn JN, Guo F (2011) DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein. J Biol Chem 286:16716–16725

    Article  PubMed  CAS  Google Scholar 

  25. Faller M, Toso D, Matsunaga M, Atanasov I, Senturia R, Chen Y, Zhou ZH, Guo F (2010) DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures 1. RNA 16:1570–1583

    Article  PubMed  CAS  Google Scholar 

  26. Senturia R, Faller M, Yin S, Loo JA, Cascio D, Sawaya MR, Hwang D, Clubb RT, Guo F (2010) Structure of the dimerization domain of DiGeorge critical region 8 2. Protein Sci 19:1354–1365

    Article  PubMed  CAS  Google Scholar 

  27. Barr I, Smith AT, Chen Y, Senturia R, Burstyn JN, Guo F (2012) Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing. Proc Natl Acad Sci USA 109:1919–1924

    Article  PubMed  CAS  Google Scholar 

  28. Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147–150

    Article  PubMed  CAS  Google Scholar 

  29. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810

    Article  PubMed  CAS  Google Scholar 

  30. Ward DM, Kaplan J (2012) Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta 25:119–131

    Google Scholar 

  31. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  32. Muckenthaler M, Roy CN, Custodio AO, Minana B, deGraaf J, Montross LK, Andrews NC, Hentze MW (2003) Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nat Genet 34:102–107

    Article  PubMed  CAS  Google Scholar 

  33. Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ramm GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis 1. Lancet 361:669–673

    Article  PubMed  CAS  Google Scholar 

  34. Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, Andres L, MacFarlane J, Sakellaropoulos N, Politou M et al (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis 1. Nat Genet 36:77–82

    Article  PubMed  CAS  Google Scholar 

  35. Huang FW, Pinkus JL, Pinkus GS, Fleming MD, Andrews NC (2005) A mouse model of juvenile hemochromatosis 1. J Clin Invest 115:2187–2191

    Article  PubMed  CAS  Google Scholar 

  36. Niederkofler V, Salie R, Arber S (2005) Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload 1. J Clin Invest 115:2180–2186

    Article  PubMed  CAS  Google Scholar 

  37. Camaschella C, Roetto A, Cali A, De GM, Garozzo G, Carella M, Majorano N, Totaro A, Gasparini P (2000) The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22 1. Nat Genet 25:14–15

    Article  PubMed  CAS  Google Scholar 

  38. Fleming RE, Ahmann JR, Migas MC, Waheed A, Koeffler HP, Kawabata H, Britton RS, Bacon BR, Sly WS (2002) Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis 1. Proc Natl Acad Sci USA 99:10653–10658

    Article  PubMed  CAS  Google Scholar 

  39. Silvestri L, Pagani A, Nai A, De DI, Kaplan J, Camaschella C (2008) The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin 1. Cell Metab 8:502–511

    Article  PubMed  CAS  Google Scholar 

  40. Mleczko-Sanecka K, Casanovas G, Ragab A, Breitkopf K, Muller A, Boutros M, Dooley S, Hentze MW, Muckenthaler MU (2010) SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression 1. Blood 115:2657–2665

    Article  PubMed  CAS  Google Scholar 

  41. Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213

    Article  PubMed  CAS  Google Scholar 

  42. Sanchez M, Galy B, Schwanhaeusser B, Blake J, Bahr-Ivacevic T, Benes V, Selbach M, Muckenthaler MU, Hentze MW (2011) Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood 118:e168–e179

    Article  PubMed  CAS  Google Scholar 

  43. Smith SR, Cooperman S, Lavaute T, Tresser N, Ghosh M, Meyron-Holtz E, Land W, Ollivierre H, Jortner B, Switzer R III et al (2004) Severity of neurodegeneration correlates with compromise of iron metabolism in mice with iron regulatory protein deficiencies 1. Ann NY Acad Sci 1012:65–83

    Article  PubMed  CAS  Google Scholar 

  44. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells 1. Nat Genet 37:1264–1269

    Article  PubMed  CAS  Google Scholar 

  45. Magro G, Cataldo I, Amico P, Torrisi A, Vecchio GM, Parenti R, Asioli S, Recupero D, D’Agata V, Mucignat MT et al (2011) Aberrant expression of TfR1/CD71 in thyroid carcinomas identifies a novel potential diagnostic marker and therapeutic target 1. Thyroid 21:267–277

    Article  PubMed  CAS  Google Scholar 

  46. Kwok JC, Richardson DR (2002) The iron metabolism of neoplastic cells: alterations that facilitate proliferation? 1. Crit Rev Oncol Hematol 42:65–78

    Article  PubMed  Google Scholar 

  47. Rovera G, Santoli D, Damsky C (1979) Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester 1. Proc Natl Acad Sci USA 76:2779–2783

    Article  PubMed  CAS  Google Scholar 

  48. Schaar DG, Medina DJ, Moore DF, Strair RK, Ting Y (2009) miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation 1. Exp Hematol 37:245–255

    Article  PubMed  CAS  Google Scholar 

  49. Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function 1. Proc Natl Acad Sci USA 99:12345–12350

    Article  PubMed  CAS  Google Scholar 

  50. Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA (2001) Iron-dependent regulation of the divalent metal ion transporter 1. FEBS Lett 509:309–316

    Article  PubMed  CAS  Google Scholar 

  51. Tchernitchko D, Bourgeois M, Martin ME, Beaumont C (2002) Expression of the two mRNA isoforms of the iron transporter Nramp2/DMTI in mice and function of the iron responsive element 1. Biochem J 363:449–455

    Article  PubMed  CAS  Google Scholar 

  52. Canonne-Hergaux F, Zhang AS, Ponka P, Gros P (2001) Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice 1. Blood 98:3823–3830

    Article  PubMed  CAS  Google Scholar 

  53. Andolfo I, De FL, Asci R, Russo R, Colucci S, Gorrese M, Zollo M, Iolascon A (2010) Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells 1. Haematologica 95:1244–1252

    Article  PubMed  CAS  Google Scholar 

  54. Chua AC, Olynyk JK, Leedman PJ, Trinder D (2004) Nontransferrin-bound iron uptake by hepatocytes is increased in the Hfe knockout mouse model of hereditary hemochromatosis. Blood 104:1519–1525

    Article  PubMed  CAS  Google Scholar 

  55. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C (2009) HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice 1. J Clin Invest 119:1159–1166

    Article  PubMed  CAS  Google Scholar 

  56. Yeh KY, Yeh M, Polk P, Glass J (2011) Hypoxia-inducible factor-2alpha and iron absorptive gene expression in Belgrade rat intestine 2. Am J Physiol Gastrointest Liver Physiol 301:G82–G90

    Article  PubMed  CAS  Google Scholar 

  57. Shpyleva SI, Tryndyak VP, Kovalchuk O, Starlard-Davenport A, Chekhun VF, Beland FA, Pogribny IP (2011) Role of ferritin alterations in human breast cancer cells 2. Breast Cancer Res Treat 126:63–71

    Article  PubMed  CAS  Google Scholar 

  58. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells 1. Cell 138:592–603

    Article  PubMed  CAS  Google Scholar 

  59. Dykxhoorn DM, Wu Y, Xie H, Yu F, Lal A, Petrocca F, Martinvalet D, Song E, Lim B, Lieberman J (2009) miR-200 enhances mouse breast cancer cell colonization to form distant metastases 1. PLoS One 4:e7181

    Article  PubMed  Google Scholar 

  60. Castoldi M, Vujic SM, Altamura S, Elmen J, Lindow M, Kiss J, Stolte J, Sparla R, D’Alessandro LA, Klingmuller U et al (2011) The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest 121:1386–1396

    Article  PubMed  CAS  Google Scholar 

  61. Bolondi G, Garuti C, Corradini E, Zoller H, Vogel W, Finkenstedt A, Babitt JL, Lin HY, Pietrangelo A (2010) Altered hepatic BMP signaling pathway in human HFE hemochromatosis 1. Blood Cells Mol Dis 45:308–312

    Article  PubMed  CAS  Google Scholar 

  62. Padgett KA, Lan RY, Leung PC, Lleo A, Dawson K, Pfeiff J, Mao TK, Coppel RL, Ansari AA, Gershwin ME (2009) Primary biliary cirrhosis is associated with altered hepatic microRNA expression 1. J Autoimmun 32:246–253

    Article  PubMed  CAS  Google Scholar 

  63. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, Ghoshal K (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas 1. J Cell Biochem 99:671–678

    Article  PubMed  CAS  Google Scholar 

  64. Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A (2008) miR-122, a paradigm for the role of microRNAs in the liver 1. J Hepatol 48:648–656

    Article  PubMed  CAS  Google Scholar 

  65. Kew MC (2009) Hepatic iron overload and hepatocellular carcinoma. Cancer Lett 286:38–43

    Article  PubMed  CAS  Google Scholar 

  66. Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjarn M, Hansen JB, Hansen HF, Straarup EM et al (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver 17. Nucleic Acids Res 36:1153–1162

    Article  PubMed  CAS  Google Scholar 

  67. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting 18. Cell Metab 3:87–98

    Article  PubMed  CAS  Google Scholar 

  68. Jopling CL, Norman KL, Sarnow P (2006) Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122 1. Cold Spring Harb Symp Quant Biol 71:369–376

    Article  PubMed  CAS  Google Scholar 

  69. Jopling CL (2008) Regulation of hepatitis C virus by microRNA-122 1. Biochem Soc Trans 36:1220–1223

    Article  PubMed  CAS  Google Scholar 

  70. Sarasin-Filipowicz M (2010) Interferon therapy of hepatitis C: molecular insights into success and failure 1. Swiss Med Wkly 140:3–11

    PubMed  CAS  Google Scholar 

  71. Ryan JD, Altamura S, Devitt E, Mullins S, Lawless MW, Muckenthaler MU, Crowe J (2012) Pegylated interferon-alpha induced hypoferremia is associated with the immediate response to treatment in hepatitis C. Hepatology. doi:10.1002/hep.25666

    PubMed  Google Scholar 

  72. Svasti S, Masaki S, Penglong T, Abe Y, Winichagoon P, Fucharoen S, Umemura T (2010) Expression of microRNA-451 in normal and thalassemic erythropoiesis. Ann Hematol 89:953–958

    Article  PubMed  CAS  Google Scholar 

  73. Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci 31:14820–14830

    Article  PubMed  CAS  Google Scholar 

  74. Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, Ponka P, Semenza GL, Schumacher A, Prchal JT (2006) Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development 1. J Biol Chem 281:25703–25711

    Article  PubMed  CAS  Google Scholar 

  75. Favaro E, Ramachandran A, McCormick R, Gee H, Blancher C, Crosby M, Devlin C, Blick C, Buffa F, Li JL et al (2010) MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU 4. PLoS One 5:e10345

    Article  PubMed  Google Scholar 

  76. Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2 6. Cell Metab 10:273–284

    Article  PubMed  CAS  Google Scholar 

  77. Arosio P, Levi S (2010) Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta 1800:783–792

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina U. Muckenthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castoldi, M., Muckenthaler, M.U. Regulation of iron homeostasis by microRNAs. Cell. Mol. Life Sci. 69, 3945–3952 (2012). https://doi.org/10.1007/s00018-012-1031-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1031-4

Keywords

Navigation