Skip to main content

Advertisement

Log in

Systematic approaches to central nervous system myelin

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of ‘omics’ approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the >1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause—when mutated in humans—hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia–axonal interactions, leukodystrophies, and demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

Ig-CAM:

Immunoglobulin-like cell adhesion molecule

MBP:

Myelin basic protein

mOL:

Myelinating oligodendrocyte

MS:

Mass spectrometry/mass spectrometric

OPC:

Oligodendrocyte precursor cell

P0:

Myelin protein zero

PLP:

Proteolipid protein

PNS:

Peripheral nervous system

References

  1. Simons M, Trotter J (2007) Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol 17(5):533–540

    Article  PubMed  CAS  Google Scholar 

  2. Baron W, Hoekstra D (2010) On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett 584(9):1760–1770

    Article  PubMed  CAS  Google Scholar 

  3. Perkins GA et al (2008) Electron tomographic analysis of cytoskeletal cross-bridges in the paranodal region of the node of Ranvier in peripheral nerves. J Struct Biol 161(3):469–480

    Article  PubMed  CAS  Google Scholar 

  4. Mobius W et al (2008) Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. Neuron Glia Biol 4(2):111–127

    Article  PubMed  Google Scholar 

  5. Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11(4):275–283

    Article  PubMed  CAS  Google Scholar 

  6. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    Article  PubMed  CAS  Google Scholar 

  7. Jahn O, Tenzer S, Werner HB (2009) Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol 40(1):55–72

    Article  PubMed  CAS  Google Scholar 

  8. Werner HB, Jahn O (2010) Myelin matters: proteomic insights into white matter disorders. Expert Rev Proteomics 7(2):159–164

    Article  PubMed  CAS  Google Scholar 

  9. Cahoy JD et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    Article  PubMed  CAS  Google Scholar 

  10. Dugas JC et al (2006) Functional genomic analysis of oligodendrocyte differentiation. J Neurosci 26(43):10967–10983

    Article  PubMed  CAS  Google Scholar 

  11. Nielsen JA et al (2006) Identification of a novel oligodendrocyte cell adhesion protein using gene expression profiling. J Neurosci 26(39):9881–9891

    Article  PubMed  CAS  Google Scholar 

  12. Lin G et al (2009) Neonatal and adult O4(+) oligodendrocyte lineage cells display different growth factor responses and different gene expression patterns. J Neurosci Res 87(15):3390–3402

    Article  PubMed  CAS  Google Scholar 

  13. Cohen RI et al (2003) A role for semaphorins and neuropilins in oligodendrocyte guidance. J Neurochem 85(5):1262–1278

    Article  PubMed  CAS  Google Scholar 

  14. Emery B et al (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138(1):172–185

    Article  PubMed  CAS  Google Scholar 

  15. Huang JK et al (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14(1):45–53

    Article  PubMed  CAS  Google Scholar 

  16. Golan N et al (2008) Identification of Tmem10/Opalin as an oligodendrocyte enriched gene using expression profiling combined with genetic cell ablation. Glia 56(11):1176–1186

    Article  PubMed  Google Scholar 

  17. Kippert A et al (2008) Identification of Tmem10/Opalin as a novel marker for oligodendrocytes using gene expression profiling. BMC Neurosci 9:40

    Article  PubMed  CAS  Google Scholar 

  18. Nicolay DJ, Doucette JR, Nazarali AJ (2007) Transcriptional control of oligodendrogenesis. Glia 55(13):1287–1299

    Article  PubMed  Google Scholar 

  19. Wegner M (2008) A matter of identity: transcriptional control in oligodendrocytes. J Mol Neurosci 35(1):3–12

    Article  PubMed  CAS  Google Scholar 

  20. Rosenberg SS, Powell BL, Chan JR (2007) Receiving mixed signals: uncoupling oligodendrocyte differentiation and myelination. Cell Mol Life Sci 64(23):3059–3068

    Article  PubMed  CAS  Google Scholar 

  21. Lau P et al (2008) Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 28(45):11720–11730

    Article  PubMed  CAS  Google Scholar 

  22. Budde H et al (2010) Control of oligodendroglial cell number by the miR-17-92 cluster. Development 137(13):2127–2132

    Article  PubMed  CAS  Google Scholar 

  23. Zhao X et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65(5):612–626

    Article  PubMed  CAS  Google Scholar 

  24. Dugas JC et al (2010) Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 65(5):597–611

    Article  PubMed  CAS  Google Scholar 

  25. Shen S, Casaccia-Bonnefil P (2008) Post-translational modifications of nucleosomal histones in oligodendrocyte lineage cells in development and disease. J Mol Neurosci 35(1):13–22

    Article  PubMed  CAS  Google Scholar 

  26. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330(6005):779–782

    Article  PubMed  CAS  Google Scholar 

  27. Emery B (2010) Transcriptional and post-transcriptional control of CNS myelination. Curr Opin Neurobiol 20(5):601–607

    Article  PubMed  CAS  Google Scholar 

  28. Nave KA (2010) Oligodendrocytes and the “micro brake” of progenitor cell proliferation. Neuron 65(5):577–579

    Article  PubMed  CAS  Google Scholar 

  29. Dugas JC, Notterpek L (2011) MicroRNAs in oligodendrocyte and Schwann cell differentiation. Dev Neurosci 33(1):14–20

    Article  PubMed  CAS  Google Scholar 

  30. He X et al (2012) Unwrapping Myelination by MicroRNAs. Neuroscientist 18(1):45–55

    Article  PubMed  CAS  Google Scholar 

  31. Jacob C, Lebrun-Julien F, Suter U (2011) How histone deacetylases control myelination. Mol Neurobiol 44(3):303–312

    Article  PubMed  CAS  Google Scholar 

  32. Li JS, Yao ZX (2012) MicroRNAs: novel regulators of oligodendrocyte differentiation and potential therapeutic targets in demyelination-related diseases. Mol Neurobiol 45(1):200–212

    Article  PubMed  CAS  Google Scholar 

  33. Taveggia C, Feltri ML, Wrabetz L (2010) Signals to promote myelin formation and repair. Nat Rev Neurol 6(5):276–287

    Article  PubMed  Google Scholar 

  34. Junker A, Hohlfeld R, Meinl E (2011) The emerging role of microRNAs in multiple sclerosis. Nat Rev Neurol 7(1):56–59

    Article  PubMed  CAS  Google Scholar 

  35. Kremer D et al (2011) The complex world of oligodendroglial differentiation inhibitors. Ann Neurol 69(4):602–618

    Article  PubMed  CAS  Google Scholar 

  36. Dutta R, Trapp BD (2011) Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 93(1):1–12

    Article  PubMed  Google Scholar 

  37. Guerau-de-Arellano M, et al (2011) miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing. J Neuroimmunol [Epub ahead of print]

  38. Kemppinen A, Sawcer S, Compston A (2011) Genome-wide association studies in multiple sclerosis: lessons and future prospects. Brief Funct Genomics 10(2):61–70

    Article  PubMed  CAS  Google Scholar 

  39. Kotter MR, Stadelmann C, Hartung HP (2011) Enhancing remyelination in disease–can we wrap it up? Brain 134(Pt 7):1882–1900

    Article  PubMed  Google Scholar 

  40. Yao ZX (2012) MicroRNA patents in demyelinating diseases: a new diagnostic and therapeutic perspective. Recent Pat DNA Gene Seq [Epub ahead of print]

  41. Liu J, Casaccia P (2010) Epigenetic regulation of oligodendrocyte identity. Trends Neurosci 33(4):193–201

    Article  PubMed  CAS  Google Scholar 

  42. Swiss VA et al (2011) Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation. PLoS ONE 6(4):e18088

    Article  PubMed  CAS  Google Scholar 

  43. Norton WT, Poduslo SE (1973) Myelination in rat brain: method of myelin isolation. J Neurochem 21(4):749–757

    Article  PubMed  CAS  Google Scholar 

  44. Wiggins RC, Fuller GN (1981) Analysis of distribution of rat sciatic nerve protein among soluble, insoluble, and myelin subfraction. Neurochem Res 6(6):719–727

    Article  PubMed  CAS  Google Scholar 

  45. Haley JE, Samuels FG, Ledeen RW (1981) Study of myelin purity in relation to axonal contaminants. Cell Mol Neurobiol 1(2):175–187

    Article  PubMed  CAS  Google Scholar 

  46. Larocca, JN, Norton WT (2007) Isolation of myelin. Curr Protoc Cell Biol, Chapter 3: p. Unit3 25

  47. Lees MB, Paxman SA (1974) Myelin proteins from different regions of the central nervous system. J Neurochem 23(4):825–831

    Article  PubMed  CAS  Google Scholar 

  48. McIntyre RJ et al (1978) Isolation and characterization of myelin-related membranes. J Neurochem 30(5):991–1002

    Article  PubMed  CAS  Google Scholar 

  49. Banik NL, Smith ME (1977) Protein determinants of myelination in different regions of developing rat central nervous system. Biochem J 162(2):247–255

    PubMed  CAS  Google Scholar 

  50. Deber CM, Reynolds SJ (1991) Central nervous system myelin: structure, function, and pathology. Clin Biochem 24(2):113–134

    Article  PubMed  CAS  Google Scholar 

  51. Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21(4):759–773

    Article  PubMed  CAS  Google Scholar 

  52. Patzig J et al (2011) Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 31(45):16369–16386

    Article  PubMed  CAS  Google Scholar 

  53. Werner HB et al (2007) Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci 27(29):7717–7730

    Article  PubMed  CAS  Google Scholar 

  54. Vanrobaeys F et al (2005) Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. J Proteome Res 4(6):2283–2293

    Article  PubMed  CAS  Google Scholar 

  55. Taylor CM et al (2004) Proteomic mapping provides powerful insights into functional myelin biology. Proc Natl Acad Sci USA 101(13):4643–4648

    Article  PubMed  CAS  Google Scholar 

  56. Ishii A et al (2009) Human myelin proteome and comparative analysis with mouse myelin. Proc Natl Acad Sci USA 106(34):14605–14610

    Article  PubMed  CAS  Google Scholar 

  57. Roth AD, Ivanova A, Colman DR (2006) New observations on the compact myelin proteome. Neuron Glia Biol 2(1):15–21

    Article  PubMed  Google Scholar 

  58. Baer AS et al (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132(Pt 2):465–481

    PubMed  Google Scholar 

  59. Dhaunchak AS et al (2010) A proteome map of axoglial specializations isolated and purified from human central nervous system. Glia 58(16):1949–1960

    Article  PubMed  Google Scholar 

  60. Aquino DA et al (1998) The constitutive heat shock protein-70 is required for optimal expression of myelin basic protein during differentiation of oligodendrocytes. Neurochem Res 23(3):413–420

    Article  PubMed  CAS  Google Scholar 

  61. Aquino DA, Lopez C, Farooq M (1996) Antisense oligonucleotide to the 70-kDa heat shock cognate protein inhibits synthesis of myelin basic protein. Neurochem Res 21(4):417–422

    Article  PubMed  CAS  Google Scholar 

  62. Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63(17):1945–1961

    Article  PubMed  CAS  Google Scholar 

  63. Buser AM et al (2008) The septin cytoskeleton in myelinating glia. Mol Cell Neurosci 40(2):156–166

    Article  PubMed  CAS  Google Scholar 

  64. Edgar JM et al (2009) Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia 57(16):1815–1824

    Article  PubMed  Google Scholar 

  65. Hensley K et al (2011) Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 43(3):180–191

    Article  PubMed  CAS  Google Scholar 

  66. Braun RJ et al (2007) Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 389(4):1033–1045

    Article  PubMed  CAS  Google Scholar 

  67. Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846

    Article  PubMed  CAS  Google Scholar 

  68. Pagliarini DJ et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134(1):112–123

    Article  PubMed  CAS  Google Scholar 

  69. Trotter J, Bitter-Suermann D, Schachner M (1989) Differentiation-regulated loss of the polysialylated embryonic form and expression of the different polypeptides of the neural cell adhesion molecule by cultured oligodendrocytes and myelin. J Neurosci Res 22(4):369–383

    Article  PubMed  CAS  Google Scholar 

  70. Zonta B et al (2008) Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system. J Cell Biol 181(7):1169–1177

    Article  PubMed  CAS  Google Scholar 

  71. Traka M et al (2002) The neuronal adhesion protein TAG-1 is expressed by Schwann cells and oligodendrocytes and is localized to the juxtaparanodal region of myelinated fibers. J Neurosci 22(8):3016–3024

    PubMed  CAS  Google Scholar 

  72. Waehneldt TV (1990) Phylogeny of myelin proteins. Ann NY Acad Sci 605:15–28

    Article  PubMed  CAS  Google Scholar 

  73. Kirschner DA et al (1989) Myelin membrane structure and composition correlated: a phylogenetic study. J Neurochem 53(5):1599–1609

    Article  PubMed  CAS  Google Scholar 

  74. Gow A et al (1999) CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99(6):649–659

    Article  PubMed  CAS  Google Scholar 

  75. Court FA et al (2004) Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431(7005):191–195

    Article  PubMed  CAS  Google Scholar 

  76. Brostoff SW, Sacks H, DiPaola C (1975) The P2 protein of bovine root myelin: partial chemical characterization. J Neurochem 24(2):289–294

    Article  PubMed  CAS  Google Scholar 

  77. Bolino A et al (2004) Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol 167(4):711–721

    Article  PubMed  CAS  Google Scholar 

  78. Quarles RH (2007) Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem 100(6):1431–1448

    PubMed  CAS  Google Scholar 

  79. Montague P et al (2006) Myelin-associated oligodendrocytic basic protein: a family of abundant CNS myelin proteins in search of a function. Dev Neurosci 28(6):479–487

    Article  PubMed  CAS  Google Scholar 

  80. Schaeren-Wiemers N et al (2004) The raft-associated protein MAL is required for maintenance of proper axon–glia interactions in the central nervous system. J Cell Biol 166(5):731–742

    Article  PubMed  CAS  Google Scholar 

  81. Corbeil D et al (2009) Expression of distinct splice variants of the stem cell marker prominin-1 (CD133) in glial cells. Glia 57(8):860–874

    Article  PubMed  Google Scholar 

  82. Chong SY et al (2012) Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proc Natl Acad Sci USA 109(4):1299–1304

    Article  PubMed  CAS  Google Scholar 

  83. Wu C et al (2009) Beta4 tubulin identifies a primitive cell source for oligodendrocytes in the mammalian brain. J Neurosci 29(24):7649–7657

    Article  PubMed  CAS  Google Scholar 

  84. Ivanovic A et al (2012) The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. J Cell Biol 196(3):337–344

    Article  PubMed  CAS  Google Scholar 

  85. Kramer-Albers EM, White R (2011) From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci 68(12):2003–2012

    Article  PubMed  CAS  Google Scholar 

  86. Cammer W et al (1976) Brain carbonic anhydrase: activity in isolated myelin and the effect of hexachlorophene. J Neurochem 27(1):165–171

    Article  PubMed  CAS  Google Scholar 

  87. Mela A, Goldman JE (2009) The tetraspanin KAI1/CD82 is expressed by late-lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination. J Neurosci 29(36):11172–11181

    Article  PubMed  CAS  Google Scholar 

  88. Schardt A et al (2009) The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia. J Neurosci Res 87(15):3465–3479

    Article  PubMed  CAS  Google Scholar 

  89. Johns TG, Bernard CC (1999) The structure and function of myelin oligodendrocyte glycoprotein. J Neurochem 72(1):1–9

    Article  PubMed  CAS  Google Scholar 

  90. Gitik M et al (2011) Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPalpha (signal regulatory protein-alpha) on phagocytes. J Neuroinflammation 8:24

    Article  PubMed  CAS  Google Scholar 

  91. Brockschnieder D et al (2006) Ermin, a myelinating oligodendrocyte-specific protein that regulates cell morphology. J Neurosci 26(3):757–762

    Article  PubMed  CAS  Google Scholar 

  92. Chakraborty G, Ledeen R (2003) Fatty acid synthesizing enzymes intrinsic to myelin. Brain Res Mol Brain Res 112(1–2):46–52

    Article  PubMed  CAS  Google Scholar 

  93. Birling MC et al (1999) A novel rat tetraspan protein in cells of the oligodendrocyte lineage. J Neurochem 73(6):2600–2608

    Article  PubMed  CAS  Google Scholar 

  94. Feldmann A et al (2011) Transport of the major myelin proteolipid protein is directed by VAMP3 and VAMP7. J Neurosci 31(15):5659–5672

    Article  PubMed  CAS  Google Scholar 

  95. Fewou SN et al (2007) Down-regulation of polysialic acid is required for efficient myelin formation. J Biol Chem 282(22):16700–16711

    Article  PubMed  CAS  Google Scholar 

  96. Jakovcevski I, Mo Z, Zecevic N (2007) Down-regulation of the axonal polysialic acid-neural cell adhesion molecule expression coincides with the onset of myelination in the human fetal forebrain. Neuroscience 149(2):328–337

    Article  PubMed  CAS  Google Scholar 

  97. De Gasperi R et al (2010) Peripheral Myelin Protein-22 Is Expressed in Cns Myelin. Transl Neurosci 1(4):282–285

    Article  PubMed  Google Scholar 

  98. Camara J et al (2009) Integrin-mediated axoglial interactions initiate myelination in the central nervous system. J Cell Biol 185(4):699–712

    Article  PubMed  CAS  Google Scholar 

  99. Thurnherr T et al (2006) Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS. J Neurosci 26(40):10110–10119

    Article  PubMed  CAS  Google Scholar 

  100. Bronstein JM (2000) Function of tetraspan proteins in the myelin sheath. Curr Opin Neurobiol 10(5):552–557

    Article  PubMed  CAS  Google Scholar 

  101. Sancho S, Young P, Suter U (2001) Regulation of Schwann cell proliferation and apoptosis in PMP22-deficient mice and mouse models of Charcot-Marie-Tooth disease type 1A. Brain 124(Pt 11):2177–2187

    Article  PubMed  CAS  Google Scholar 

  102. Notterpek L et al (2001) Peripheral myelin protein 22 is a constituent of intercellular junctions in epithelia. Proc Natl Acad Sci USA 98(25):14404–14409

    Article  PubMed  CAS  Google Scholar 

  103. Roux KJ et al (2005) Modulation of epithelial morphology, monolayer permeability, and cell migration by growth arrest specific 3/peripheral myelin protein 22. Mol Biol Cell 16(3):1142–1151

    Article  PubMed  CAS  Google Scholar 

  104. Berger P, Niemann A, Suter U (2006) Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 54(4):243–257

    Article  PubMed  Google Scholar 

  105. Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581

    Article  PubMed  CAS  Google Scholar 

  106. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73(10):1907–1920

    Article  PubMed  CAS  Google Scholar 

  107. Rana S, Zoller M (2011) Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans 39(2):559–562

    Article  PubMed  CAS  Google Scholar 

  108. Krämer-Albers E-M et al (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1:1446–1461

    Article  PubMed  CAS  Google Scholar 

  109. Fitzner D et al (2011) Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 124(Pt 3):447–458

    Article  PubMed  CAS  Google Scholar 

  110. Bakhti M, Winter C, Simons M (2011) Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem 286(1):787–796

    Article  PubMed  CAS  Google Scholar 

  111. Scholze AR, Barres BA (2012) A Nogo signal coordinates the perfect match between myelin and axons. Proc Natl Acad Sci USA 109(4):1003–1004

    Article  PubMed  CAS  Google Scholar 

  112. Schiffmann R, Boespflug-Tanguy O (2001) An update on the leukodsytrophies. Curr Opin Neurol 14(6):789–794

    Article  PubMed  CAS  Google Scholar 

  113. Di Rocco M et al (2004) Genetic disorders affecting white matter in the pediatric age. Am J Med Genet B Neuropsychiatr Genet 129B(1):85–93

    Article  PubMed  Google Scholar 

  114. Patay Z (2005) Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol 15(11):2284–2303

    Article  PubMed  Google Scholar 

  115. Lyon G, Fattal-Valevski A, Kolodny EH (2006) Leukodystrophies: clinical and genetic aspects. Top Magn Reson Imag 17(4):219–242

    Article  Google Scholar 

  116. Boespflug-Tanguy O et al (2008) Genes involved in leukodystrophies: a glance at glial functions. Curr Neurol Neurosci Rep 8(3):217–229

    Article  PubMed  CAS  Google Scholar 

  117. Kohler W (2010) Leukodystrophies with late disease onset: an update. Curr Opin Neurol 23(3):234–241

    Article  PubMed  Google Scholar 

  118. Saugier-Veber P et al (1994) X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat Genet 6(3):257–262

    Article  PubMed  CAS  Google Scholar 

  119. Garbern JY et al (1997) Proteolipid protein is necessary in peripheral as well as central myelin. Neuron 19(1):205–218

    Article  PubMed  CAS  Google Scholar 

  120. Gruenenfelder FI et al (2011) Axon-glial interaction in the CNS: what we have learned from mouse models of Pelizaeus-Merzbacher disease. J Anat 219(1):33–43

    Article  PubMed  Google Scholar 

  121. Henneke M et al (2009) RNASET2-deficient cystic leukoencephalopathy resembles congenital cytomegalovirus brain infection. Nat Genet 41(7):773–775

    Article  PubMed  CAS  Google Scholar 

  122. Vaurs-Barriere C et al (2009) Pelizaeus-Merzbacher-Like disease presentation of MCT8 mutated male subjects. Ann Neurol 65(1):114–118

    Article  PubMed  CAS  Google Scholar 

  123. Ghezzi D et al (2009) SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet 41(6):654–656

    Article  PubMed  CAS  Google Scholar 

  124. Lopez-Hernandez T et al (2011) Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am J Hum Genet 88(4):422–432

    Article  PubMed  CAS  Google Scholar 

  125. Rademakers R et al (2011) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44(2):200–205

    Article  PubMed  CAS  Google Scholar 

  126. Aubourg P (1993) The leukodystrophies: a window to myelin. Nat Genet 5(2):105–106

    Article  PubMed  CAS  Google Scholar 

  127. Zara F et al (2006) Deficiency of hyccin, a newly identified membrane protein, causes hypomyelination and congenital cataract. Nat Genet 38(10):1111–1113

    Article  PubMed  CAS  Google Scholar 

  128. Gazzerro E, et al (2012) Hyccin, the molecule mutated in the leukodystrophy hypomyelination and congenital cataract (HCC), is a neuronal protein. PLoS One

  129. Erblich B et al (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6(10):e26317

    Article  PubMed  CAS  Google Scholar 

  130. Mignot C et al (2004) Alexander disease: putative mechanisms of an astrocytic encephalopathy. Cell Mol Life Sci 61(3):369–385

    Article  PubMed  CAS  Google Scholar 

  131. Sawaishi Y (2009) Review of Alexander disease: beyond the classical concept of leukodystrophy. Brain Dev 31(7):493–498

    Article  PubMed  Google Scholar 

  132. Favre-Kontula L et al (2008) GlialCAM, an immunoglobulin-like cell adhesion molecule is expressed in glial cells of the central nervous system. Glia 56(6):633–645

    Article  PubMed  Google Scholar 

  133. Lopez-Hernandez T et al (2011) Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Hum Mol Genet 20(16):3266–3277

    Article  PubMed  CAS  Google Scholar 

  134. Leegwater PA et al (2001) Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum Genet 68(4):831–838

    Article  PubMed  CAS  Google Scholar 

  135. Heiman M et al (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135(4):738–748

    Article  PubMed  CAS  Google Scholar 

  136. Doyle JP et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4):749–762

    Article  PubMed  CAS  Google Scholar 

  137. Lein ES et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176

    Article  PubMed  CAS  Google Scholar 

  138. Fu H et al (2009) A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J Neurosci 29(36):11399–11408

    Article  PubMed  CAS  Google Scholar 

  139. Gray PA et al (2004) Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306(5705):2255–2257

    Article  PubMed  CAS  Google Scholar 

  140. Fu H, Kesari S, Cai J (2011) Tcf7l2 is tightly controlled during myelin formation. Cell Mol Neurobiol [Epub ahead of print]

  141. Pedre X et al (2011) Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J Neurosci 31(9):3435–3445

    Article  PubMed  CAS  Google Scholar 

  142. Visel A, Thaller C, Eichele G (2004) GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res 32(Database issue): D552–D556

    Google Scholar 

  143. Magdaleno S et al (2006) BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol 4(4):e86

    Article  PubMed  CAS  Google Scholar 

  144. Geschwind DH, Konopka G (2009) Neuroscience in the era of functional genomics and systems biology. Nature 461(7266):908–915

    Article  PubMed  CAS  Google Scholar 

  145. Richardson L, et al (2010) EMAGE mouse embryo spatial gene expression database: 2010 update. Nucleic Acids Res 38(Database issue):D703–D709

    Google Scholar 

  146. Diez-Roux G et al (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9(1):e1000582

    Article  PubMed  CAS  Google Scholar 

  147. Finger JH, et al (2011) The mouse gene expression database (GXD): 2011 update. Nucleic Acids Res 39(Database issue): D835–D841

    Google Scholar 

  148. Fewou SN et al (2010) Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids. J Neurochem 112(3):599–610

    Article  PubMed  CAS  Google Scholar 

  149. Howng SY et al (2010) ZFP191 is required by oligodendrocytes for CNS myelination. Genes Dev 24(3):301–311

    Article  PubMed  CAS  Google Scholar 

  150. Chew LJ et al (2011) SRY-box containing gene 17 regulates the Wnt/beta-catenin signaling pathway in oligodendrocyte progenitor cells. J Neurosci 31(39):13921–13935

    Article  PubMed  CAS  Google Scholar 

  151. Graumann U et al (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13(4):554–573

    Article  PubMed  CAS  Google Scholar 

  152. Robinson WH, Utz PJ, Steinman L (2003) Genomic and proteomic analysis of multiple sclerosis. Opinion. Curr Opin Immunol 15(6):660–667

    Article  PubMed  CAS  Google Scholar 

  153. Kinter J, Zeis T, Schaeren-Wiemers N (2008) RNA profiling of MS brain tissues. Int MS J 15(2):51–58

    PubMed  CAS  Google Scholar 

  154. Han MH et al (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451(7182):1076–1081

    Article  PubMed  CAS  Google Scholar 

  155. Zeis T et al (2009) Molecular changes in white matter adjacent to an active demyelinating lesion in early multiple sclerosis. Brain Pathol 19(3):459–466

    Article  PubMed  CAS  Google Scholar 

  156. Zeis T et al (2008) Gene expression analysis of normal appearing brain tissue in an animal model for multiple sclerosis revealed grey matter alterations, but only minor white matter changes. J Neuroimmunol 205(1–2):10–19

    Article  PubMed  CAS  Google Scholar 

  157. Derfuss T et al (2009) Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc Natl Acad Sci USA 106(20):8302–8307

    Article  PubMed  CAS  Google Scholar 

  158. Hakak Y et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98(8):4746–4751

    Article  PubMed  CAS  Google Scholar 

  159. Tkachev D et al (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362(9386):798–805

    Article  PubMed  CAS  Google Scholar 

  160. Lin CY, Sawa A, Jaaro-Peled H (2012) Better understanding of mechanisms of schizophrenia and bipolar disorder: from human gene expression profiles to mouse models. Neurobiol Dis 45(1):48–56

    Article  PubMed  CAS  Google Scholar 

  161. Sequeira PA, Martin MV, Vawter MP (2012) The first decade and beyond of transcriptional profiling in schizophrenia. Neurobiol Dis 45(1):23–36

    Article  PubMed  CAS  Google Scholar 

  162. English JA et al (2011) The neuroproteomics of schizophrenia. Biol Psychiatry 69(2):163–172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank W. Möbius for providing the electron micrograph in Fig. 1, J. M. Edgar for critical reading of the manuscript, C. M. Kassmann for discussion, and K.-A. Nave for continuous support. ST is supported by the Deutsche Forschungsgemeinschaft (SFB 490 Z3) and the Forschungszentrum Immunologie (FZI) at the University of Mainz, and HBW is supported by the BMBF (DLR-Leukonet) and the European Commission (FP7-LeukoTreat).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke B. Werner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2012_958_MOESM1_ESM.xls

Supplementary material 1 Supplemental Table S1. Compendium of proteins identified by mass spectrometry in CNS myelin. Out of the 1,280 proteins listed, 1,261 proteins could be assigned to a unique gene identifier, of which 1,249 could be correlated with the oligodendroglial transcriptome as established by [9] (last column). The proteins are classified into three groups: known myelin proteins, proteins identified by MS in myelin, and proteins presumably derived from mitochondria that contaminate the myelin-enriched fraction. Identification of a protein in one of the 11 available proteomic datasets (see main text for references) is indicated by “1″. Potential mitochondrial localization was classified by prior knowledge (MitoCarta) and prediction of subcellular localization according to three algorithms (TargetP, Cello, Wolfpsort). The number of transmembrane domains was predicted by three algorithms (TMpred, TMHMM, Phobius). If available, correlation with a large-scale in situ-hybridization dataset (‘Allen Brain Atlas‘) is provided (OL oligodendrocyte; AS astrocyte; NE, neuron) according to supplemental table 11 in [137](XLS 606 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Monasterio-Schrader, P., Jahn, O., Tenzer, S. et al. Systematic approaches to central nervous system myelin. Cell. Mol. Life Sci. 69, 2879–2894 (2012). https://doi.org/10.1007/s00018-012-0958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0958-9

Keywords

Navigation