Skip to main content
Log in

The functional RNA domain 5BSL3.2 within the NS5B coding sequence influences hepatitis C virus IRES-mediated translation

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hepatitis C virus (HCV) translation is mediated by an internal ribosome entry site (IRES) located at the 5′ end of the genomic RNA. The 3′ untranslatable region (3′UTR) stimulates translation by the recruitment of protein factors that simultaneously bind to the 5′ end of the viral genome. This leads to the formation of a macromolecular complex with a closed loop conformation, similar to that described for the cap-translated mRNAs. We previously demonstrated the existence of a long-range RNA–RNA interaction involving subdomain IIId of the IRES region and the stem–loop 5BSL3.2 of the CRE element at the 3′ end of the viral genome. The present study provides evidence that the enhancement of HCV IRES-dependent translation mediated by the 3′UTR is negatively controlled by the CRE region in the human hepatoma cell lines Huh-7 and Hep-G2 in a time-dependent manner. Domain 5BSL3.2 is the major partner in this process. Mutations in this motif lead to an increase in IRES activity by up to eightfold. These data support the existence of a functional high order structure in the HCV genome that involves two evolutionarily conserved RNA elements, domain IIId in the IRES and stem–loop 5BSL3.2 in the CRE region. This interaction could have a role in the circularisation of the viral genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HCV:

Hepatitis C virus

IRES:

Internal ribosome entry site

UTR:

Untranslatable region

CRE:

cis-acting replicating element

References

  1. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359–362

    Article  PubMed  CAS  Google Scholar 

  2. Kuo G, Choo QL, Alter HJ et al (1989) An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244:362–364

    Article  PubMed  CAS  Google Scholar 

  3. Hoofnagle JH (1997) Hepatitis C: the clinical spectrum of disease. Hepatology 26:15S–20S

    Article  PubMed  CAS  Google Scholar 

  4. Kato N, Hijikata M, Ootsuyama Y, Nakagawa M, Ohkoshi S, Sugimura T, Shimotohno K (1990) Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci USA 87:9524–9528

    Article  PubMed  CAS  Google Scholar 

  5. Takamizawa A, Mori C, Fuke I, Manabe S, Murakami S, Fujita J, Onishi E, Andoh T, Yoshida I, Okayama H (1991) Structure and organization of the hepatitis C virus genome isolated from human carriers. J Virol 65:1105–1113

    PubMed  CAS  Google Scholar 

  6. Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A (1992) Internal ribosome entry site within hepatitis C virus RNA. J Virol 66:1476–1483

    PubMed  CAS  Google Scholar 

  7. Wang C, Sarnow P, Siddiqui A (1993) Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67:3338–3344

    PubMed  CAS  Google Scholar 

  8. Kolykhalov AA, Mihalik K, Feinstone SM, Rice CM (2000) Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3’ nontranslated region are essential for virus replication in vivo. J Virol 74:2046–2051

    Article  PubMed  CAS  Google Scholar 

  9. Friebe P, Bartenschlager R (2002) Genetic analysis of sequences in the 3’ nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76:5326–5338

    Article  PubMed  CAS  Google Scholar 

  10. Yi M, Lemon SM (2003) 3’ nontranslated RNA signals required for replication of hepatitis C virus RNA. J Virol 77:3557–3568

    Article  PubMed  CAS  Google Scholar 

  11. Yi M, Lemon SM (2003) Structure-function analysis of the 3’ stem–loop of hepatitis C virus genomic RNA and its role in viral RNA replication. RNA 9:331–345

    Article  PubMed  CAS  Google Scholar 

  12. Song Y, Friebe P, Tzima E, Junemann C, Bartenschlager R, Niepmann M (2006) The hepatitis C virus RNA 3’-untranslated region strongly enhances translation directed by the internal ribosome entry site. J Virol 80:11579–11588

    Article  PubMed  CAS  Google Scholar 

  13. Reynolds JE, Kaminski A, Kettinen HJ, Grace K, Clarke BE, Carroll AR, Rowlands DJ, Jackson RJ (1995) Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14:6010–6020

    PubMed  CAS  Google Scholar 

  14. Wang TH, Rijnbrand RC, Lemon SM (2000) Core protein-coding sequence, but not core protein, modulates the efficiency of cap-independent translation directed by the internal ribosome entry site of hepatitis C virus. J Virol 74:11347–11358

    Article  PubMed  CAS  Google Scholar 

  15. Lytle JR, Wu L, Robertson HD (2002) Domains on the hepatitis C virus internal ribosome entry site for 40S subunit binding. RNA 8:1045–1055

    Article  PubMed  CAS  Google Scholar 

  16. Ji H, Fraser CS, Yu Y, Leary J, Doudna JA (2004) Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc Natl Acad Sci USA 101:16990–16995

    Article  PubMed  CAS  Google Scholar 

  17. Otto GA, Puglisi JD (2004) The pathway of HCV IRES-mediated translation initiation. Cell 119:369–380

    Article  PubMed  CAS  Google Scholar 

  18. Ito T, Tahara SM, Lai MM (1998) The 3’-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 72:8789–8796

    PubMed  CAS  Google Scholar 

  19. Bradrick SS, Walters RW, Gromeier M (2006) The hepatitis C virus 3’-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Res 34:1293–1303

    Article  PubMed  CAS  Google Scholar 

  20. Morikawa K, Ito T, Nozawa H, Inokuchi M, Uchikoshi M, Saito T, Mitamura K, Imawari M (2006) Translational enhancement of HCV RNA genotype 1b by 3’-untranslated and envelope 2 protein-coding sequences. Virology 345:404–415

    Article  PubMed  CAS  Google Scholar 

  21. Lourenço S, Costa F, Debarges B, Andrieu T, Cahour A (2008) Hepatitis C virus internal ribosome entry site-mediated translation is stimulated by cis-acting RNA elements and trans-acting viral factors. FEBS J 275:4179–4197

    Article  PubMed  Google Scholar 

  22. Bung C, Bochkaeva Z, Terenin I, Zinovkin R, Shatsky IN, Niepmann M (2010) Influence of the hepatitis C virus 3’-untranslated region on IRES-dependent and cap-dependent translation initiation. FEBS Lett 584:837–842

    Article  PubMed  CAS  Google Scholar 

  23. Petrik J, Parker H, Alexander GJ (1999) Human hepatic glyceraldehyde-3-phosphate dehydrogenase binds to the poly(U) tract of the 3’ non-coding region of hepatitis C virus genomic RNA. J Gen Virol 80:3109–3113

    PubMed  CAS  Google Scholar 

  24. Spangberg K, Goobar-Larsson L, Wahren-Herlenius M, Schwartz S (1999) The La protein from human liver cells interacts specifically with the U-rich region in the hepatitis C virus 3’ untranslated region. J Hum Virol 2:296–307

    PubMed  CAS  Google Scholar 

  25. Wood J, Frederickson RM, Fields S, Patel AH (2001) Hepatitis C virus 3’X region interacts with human ribosomal proteins. J Virol 75:1348–1358

    Article  PubMed  CAS  Google Scholar 

  26. McCaffrey AP, Ohashi K, Meuse L, Shen S, Lancaster AM, Lukavsky PJ, Sarnow P, Kay MA (2002) Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. Mol Ther 5:676–684

    Article  PubMed  CAS  Google Scholar 

  27. Huang L, Hwang J, Sharma SD, Hargittai MR, Chen Y, Arnold JJ, Raney KD, Cameron CE (2005) Hepatitis C virus non-structural protein 5A (NS5A) is a RNA-binding protein. J Biol Chem 280:36417–36428

    Article  PubMed  CAS  Google Scholar 

  28. Wang H, Shen XT, Ye R, Lan SY, Xiang L, Yuan ZH (2005) Roles of the polypyrimidine tract and 3’ noncoding region of hepatitis C virus RNA in the internal ribosome entry site-mediated translation. Arch Virol 150:1085–1099

    Article  PubMed  CAS  Google Scholar 

  29. Scheller N, Mina LB, Galao RP, Chari A, Gimenez-Barcons M, Noueiry A, Fischer U, Meyerhans A, Díez J (2009) Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proc Natl Acad Sci USA 106:13517–13522

    Article  PubMed  CAS  Google Scholar 

  30. Weinlich S, Huttelmaier S, Schierhorn A, Behrens SE, Ostareck-Lederer A, Ostareck DH (2009) IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3’UTR. RNA 15:1528–1542

    Article  PubMed  CAS  Google Scholar 

  31. Yu KL, Jang SI, You JC (2009) Identification of in vivo interaction between Hepatitis C Virus core protein and 5’ and 3’ UTR RNA. Virus Res 145:285–292

    Article  PubMed  CAS  Google Scholar 

  32. Spangberg K, Wiklund L, Schwartz S (2001) Binding of the La autoantigen to the hepatitis C virus 3’ untranslated region protects the RNA from rapid degradation in vitro. J Gen Virol 82:113–120

    PubMed  CAS  Google Scholar 

  33. Sachs AB, Sarnow P, Hentze MW (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831–838

    Article  PubMed  CAS  Google Scholar 

  34. Edgil D, Harris E (2006) End-to-end communication in the modulation of translation by mammalian RNA viruses. Virus Res 119:43–51

    Article  PubMed  CAS  Google Scholar 

  35. Harris E, Holden KL, Edgil D, Polacek C, Clyde K (2006) Molecular biology of flaviviruses. Novartis Found Symp 277:23–39 Discussion 40, 71–23, 251–253

    Article  PubMed  CAS  Google Scholar 

  36. Serrano P, Pulido MR, Saiz M, Martínez-Salas E (2006) The 3’ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA–RNA interactions with the 5’ end region. J Gen Virol 87:3013–3022

    Article  PubMed  CAS  Google Scholar 

  37. Romero-López C, Berzal-Herranz A (2009) A long-range RNA–RNA interaction between the 5’ and 3’ ends of the HCV genome. RNA 15:1740–1752

    Article  PubMed  Google Scholar 

  38. Kolupaeva VG, Pestova TV, Hellen CU (2000) An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J Virol 74:6242–6250

    Article  PubMed  CAS  Google Scholar 

  39. Lukavsky PJ, Otto GA, Lancaster AM, Sarnow P, Puglisi JD (2000) Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat Struct Biol 7:1105–1110

    Article  PubMed  CAS  Google Scholar 

  40. Babaylova E, Graifer D, Malygin A, Stahl J, Shatsky I, Karpova G (2009) Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome. Nucleic Acids Res 37:1141–1151

    Article  PubMed  CAS  Google Scholar 

  41. Barria MI, González A, Vera-Otarola J, Leon U, Vollrath V, Marsac D, Monasterio O, Pérez-Acle T, Soza A, López-Lastra M (2009) Analysis of natural variants of the hepatitis C virus internal ribosome entry site reveals that primary sequence plays a key role on cap-independent translation. Nucleic Acids Res 37:957–971

    Article  PubMed  CAS  Google Scholar 

  42. Jubin R, Vantuno NE, Kieft JS, Murray MG, Doudna JA, Lau JY, Baroudy BM (2000) Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. J Virol 74:10430–10437

    Article  PubMed  CAS  Google Scholar 

  43. Klinck R, Westhof E, Walker S, Afshar M, Collier A, Aboul-Ela F (2000) A potential RNA drug target in the hepatitis C virus internal ribosomal entry site. RNA 6:1423–1431

    Article  PubMed  CAS  Google Scholar 

  44. Lee H, Shin H, Wimmer E, Paul AV (2004) cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome. J Virol 78:10865–10877

    Article  PubMed  CAS  Google Scholar 

  45. You S, Stump DD, Branch AD, Rice CM (2004) A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication. J Virol 78:1352–1366

    Article  PubMed  CAS  Google Scholar 

  46. Friebe P, Boudet J, Simorre JP, Bartenschlager R (2005) Kissing-loop interaction in the 3’ end of the hepatitis C virus genome essential for RNA replication. J Virol 79:380–392

    Article  PubMed  CAS  Google Scholar 

  47. Romero-López C, Díaz-González R, Berzal-Herranz A (2007) Inhibition of hepatitis C virus internal ribosome entry site-mediated translation by an RNA targeting the conserved IIIf domain. Cell Mol Life Sci 64:2994–3006

    Article  PubMed  Google Scholar 

  48. Romero-López C, Barroso-delJesus A, Puerta-Fernández E, Berzal-Herranz A (2005) Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biol Chem 386:183–190

    Article  PubMed  Google Scholar 

  49. Romero-López C, Díaz-González R, Barroso-delJesus A, Berzal-Herranz A (2009) Inhibition of HCV replication and IRES-dependent translation by an RNA molecule. J Gen Virol 90:1659–1669

    Article  PubMed  Google Scholar 

  50. Diviney S, Tuplin A, Struthers M, Armstrong V, Elliott RM, Simmonds P, Evans DJ (2008) A hepatitis C virus cis-acting replication element forms a long-range RNA–RNA interaction with upstream RNA sequences in NS5B. J Virol 82:9008–9022

    Article  PubMed  CAS  Google Scholar 

  51. Komarova AV, Brocard M, Kean KM (2006) The case for mRNA 5’ and 3’ end cross talk during translation in a eukaryotic cell. Prog Nucleic Acid Res Mol Biol 81:331–367

    Article  PubMed  CAS  Google Scholar 

  52. Corver J, Lenches E, Smith K, Robison RA, Sando T, Strauss EG, Strauss JH (2003) Fine mapping of a cis-acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization. J Virol 77:2265–2270

    Article  PubMed  CAS  Google Scholar 

  53. Markoff L (2003) 5’- and 3’-noncoding regions in flavivirus RNA. Adv Virus Res 59:177–228

    Article  PubMed  CAS  Google Scholar 

  54. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

  55. Junemann C, Song Y, Bassili G, Goergen D, Henke J, Niepmann M (2007) Picornavirus internal ribosome entry site elements can stimulate translation of upstream genes. J Biol Chem 282:132–141

    Article  PubMed  Google Scholar 

  56. Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C, Junemann C, Niepmann M (2008) microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27:3300–3310

    Article  PubMed  CAS  Google Scholar 

  57. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–1581

    Article  PubMed  CAS  Google Scholar 

  58. Cai Z, Zhang C, Chang KS, Jiang J, Ahn BC, Wakita T, Liang TJ, Luo G (2005) Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells. J Virol 79:13963–13973

    Article  PubMed  CAS  Google Scholar 

  59. Wakita T, Pietschmann T, Kato T et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796

    Article  PubMed  CAS  Google Scholar 

  60. Boonstra A, van der Laan LJ, Vanwolleghem T, Janssen HL (2009) Experimental models for hepatitis C viral infection. Hepatology 50:1646–1655

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Huh-7 cell line was a kind gift of Dr. R. Aldabe. We thank Dr. Alicia Barroso-delJesus for helpful discussions. We also thank Vicente Augustin for excellent technical assistance. This work was supported by Grants BFU2009-08137 from the Spanish Ministerio de Innovación y Ciencia, CTS-5077 from the Junta de Andalucía and FEDER funds from the EU to A.B–H. C.R-L was funded by Grants 2004-20E632 from the Spanish National Research Council (CSIC) and BFU2009-08137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Berzal-Herranz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero-López, C., Berzal-Herranz, A. The functional RNA domain 5BSL3.2 within the NS5B coding sequence influences hepatitis C virus IRES-mediated translation. Cell. Mol. Life Sci. 69, 103–113 (2012). https://doi.org/10.1007/s00018-011-0729-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0729-z

Keywords

Navigation