Skip to main content

Advertisement

Log in

The multiple roles of Notch signaling during left-right patterning

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The establishment of left-right (LR) asymmetry is regulated by intricate signaling mechanisms during embryogenesis and this asymmetry is critical for morphogenesis as well as the positioning of internal organs within the organism. Recent progress including elucidation of ion transporters, leftward nodal flow, and regulation of asymmetric gene expression contributes to our understanding of how the breaking of the symmetry is initiated and how this laterality information is subsequently transmitted to the organ primordium. A number of developmental signaling pathways have been implicated in this complex process. In this review, we will focus on the roles of the Notch signaling pathway during development of LR asymmetry. The Notch signaling pathway is a short-range communication system between neighboring cells. While Notch signaling plays essential roles in regulating the morphogenesis of the node and left-specific expression of Nodal in the lateral plate mesoderm, a hallmark gene in LR patterning, Notch signaling also suppresses the expression of Pitx2 that is a direct downstream target of Nodal during later stages of development. This negative activity of Notch signaling towards left-specific activity was recently shown to be inhibited by the B cell lymphoma 6 (BCL6)/BCL6 co-repressor (BcoR) transcriptional repressor complex in a target-specific manner. The complex regulation of Notch-dependent gene expression for LR asymmetry will be highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Speder P, Petzoldt A, Suzanne M, Noselli S (2007) Strategies to establish left/right asymmetry in vertebrates and invertebrates. Curr Opin Genet Dev 17(4):351–358

    Article  PubMed  CAS  Google Scholar 

  2. Levin M (2005) Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 122(1):3–25

    Article  PubMed  CAS  Google Scholar 

  3. Raya A, Belmonte JC (2006) Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nat Rev 7(4):283–293

    Article  CAS  Google Scholar 

  4. Aylsworth AS (2001) Clinical aspects of defects in the determination of laterality. Am J Med Genet 101(4):345–355

    Article  PubMed  CAS  Google Scholar 

  5. Bartram U, Wirbelauer J, Speer CP (2005) Heterotaxy syndrome–asplenia and polysplenia as indicators of visceral malposition and complex congenital heart disease. Biol Neonate 88(4):278–290

    Article  PubMed  Google Scholar 

  6. Bisgrove BW, Morelli SH, Yost HJ (2003) Genetics of human laterality disorders: insights from vertebrate model systems. Annu Rev Genomics Hum Genet 4:1–32

    Article  PubMed  CAS  Google Scholar 

  7. Ramsdell AF (2005) Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol 288(1):1–20

    Article  PubMed  CAS  Google Scholar 

  8. Brown NA, Wolpert L (1990) The development of handedness in left/right asymmetry. Development 109(1):1–9

    PubMed  CAS  Google Scholar 

  9. Vandenberg LN, Levin M (2010) Consistent left-right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin. Development 137(7):1095–1105

    Article  PubMed  CAS  Google Scholar 

  10. Brown NA, McCarthy A, Wolpert L (1991) Development of handed body asymmetry in mammals. Ciba Found Symp 162:182–196 discussion 196-201

    PubMed  CAS  Google Scholar 

  11. Hamada H (2008) Breakthroughs and future challenges in left-right patterning. Dev Growth Differ 50(Suppl 1):S71–78

    Article  PubMed  CAS  Google Scholar 

  12. Manner J (2001) Does an equivalent of the “ventral node” exist in chick embryos? A scanning electron microscopic study. Anat Embryol (Berl) 203(6):481–490

    Article  CAS  Google Scholar 

  13. Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125(1):33–45

    Article  PubMed  CAS  Google Scholar 

  14. Shiratori H, Hamada H (2006) The left-right axis in the mouse: from origin to morphology. Development 133(11):2095–2104

    Article  PubMed  CAS  Google Scholar 

  15. Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M (2002) Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111(1):77–89

    Article  PubMed  CAS  Google Scholar 

  16. Meneton P, Lesage F, Barhanin J (1999) Potassium ATPases, channels, and transporters: an overview. Semin Nephrol 19(5):438–457

    PubMed  CAS  Google Scholar 

  17. Kawakami Y, Raya A, Raya RM, Rodriguez-Esteban C, Belmonte JC (2005) Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435(7039):165–171

    Article  PubMed  CAS  Google Scholar 

  18. Adams DS, Robinson KR, Fukumoto T, Yuan S, Albertson RC, Yelick P, Kuo L, McSweeney M, Levin M (2006) Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133(9):1657–1671

    Article  PubMed  CAS  Google Scholar 

  19. Shu X, Huang J, Dong Y, Choi J, Langenbacher A, Chen JN (2007) Na, K-ATPase alpha2 and Ncx4a regulate zebrafish left-right patterning. Development 134(10):1921–1930

    Article  PubMed  CAS  Google Scholar 

  20. Vandenberg LN, Levin M (2010) Far from solved: a perspective on what we know about early mechanisms of left-right asymmetry. Dev Dyn 239(12):3131–3146

    Article  PubMed  Google Scholar 

  21. Levin M, Mercola M (1999) Gap junction-mediated transfer of left-right patterning signals in the early chick blastoderm is upstream of Shh asymmetry in the node. Development 126(21):4703–4714

    PubMed  CAS  Google Scholar 

  22. Hatler JM, Essner JJ, Johnson RG (2009) A gap junction connexin is required in the vertebrate left-right organizer. Dev Biol 336(2):183–191

    Article  PubMed  CAS  Google Scholar 

  23. Fukumoto T, Kema IP, Levin M (2005) Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr Biol 15(9):794–803

    Article  PubMed  CAS  Google Scholar 

  24. Nonaka S, Shiratori H, Saijoh Y, Hamada H (2002) Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418(6893):96–99

    Article  PubMed  CAS  Google Scholar 

  25. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95(6):829–837

    Article  PubMed  CAS  Google Scholar 

  26. Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N (1999) Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 4(4):459–468

    Article  PubMed  CAS  Google Scholar 

  27. Schweickert A, Weber T, Beyer T, Vick P, Bogusch S, Feistel K, Blum M (2007) Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 17(1):60–66

    Article  PubMed  CAS  Google Scholar 

  28. Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ (2005) Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132(6):1247–1260

    Article  PubMed  CAS  Google Scholar 

  29. Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132(8):1907–1921

    Article  PubMed  CAS  Google Scholar 

  30. Okada Y, Takeda S, Tanaka Y, Belmonte JC, Hirokawa N (2005) Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121(4):633–644

    Article  PubMed  CAS  Google Scholar 

  31. Blum M, Beyer T, Weber T, Vick P, Andre P, Bitzer E, Schweickert A (2009) Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev Dyn 238(6):1215–1225

    Article  PubMed  Google Scholar 

  32. Supp DM, Witte DP, Potter SS, Brueckner M (1997) Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 389(6654):963–966

    Article  PubMed  CAS  Google Scholar 

  33. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114(1):61–73

    Article  PubMed  CAS  Google Scholar 

  34. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  PubMed  CAS  Google Scholar 

  35. Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF, Hamada H (2005) De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol 3(8):e268

    Article  PubMed  CAS  Google Scholar 

  36. Hirokawa N, Tanaka Y, Okada Y (2009) Left-right determination: involvement of molecular motor KIF3, cilia, and nodal flow. Cold Spring Harb Perspect Biol 1(1):a000802

    Article  PubMed  Google Scholar 

  37. Cartwright JH, Piro O, Tuval I (2004) Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc Natl Acad Sci USA 101(19):7234–7239

    Article  PubMed  CAS  Google Scholar 

  38. Buceta J, Ibanes M, Rasskin-Gutman D, Okada Y, Hirokawa N, Izpisua-Belmonte JC (2005) Nodal cilia dynamics and the specification of the left/right axis in early vertebrate embryo development. Biophys J 89(4):2199–2209

    Article  PubMed  CAS  Google Scholar 

  39. Cartwright JH, Piro N, Piro O, Tuval I (2007) Embryonic nodal flow and the dynamics of nodal vesicular parcels. J R Soc Interface 4(12):49–55

    Article  PubMed  Google Scholar 

  40. Smith DJ, Gaffney EA, Blake JR (2007) Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid. Bull Math Biol 69(5):1477–1510

    Article  PubMed  CAS  Google Scholar 

  41. Smith DJ, Blake JR, Gaffney EA (2008) Fluid mechanics of nodal flow due to embryonic primary cilia. J R Soc Interface 5(22):567–573

    Article  PubMed  CAS  Google Scholar 

  42. Wang G, Cadwallader AB, Jang DS, Tsang M, Yost HJ, Amack JD (2010) The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer’s vesicle in zebrafish. Development 138(1):45–54

    Article  PubMed  CAS  Google Scholar 

  43. Song H, Hu J, Chen W, Elliott G, Andre P, Gao B, Yang Y (2010) Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 466(7304):378–382

    Article  PubMed  CAS  Google Scholar 

  44. May-Simera HL, Kai M, Hernandez V, Osborn DP, Tada M, Beales PL (2010) Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish. Dev Biol 345(2):215–225

    Article  PubMed  CAS  Google Scholar 

  45. Antic D, Stubbs JL, Suyama K, Kintner C, Scott MP, Axelrod JD (2010) Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS One 5(2):e8999

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Y, Levin M (2009) Left-right asymmetry in the chick embryo requires core planar cell polarity protein Vangl2. Genesis 47(11):719–728

    Article  PubMed  CAS  Google Scholar 

  47. Borovina A, Superina S, Voskas D, Ciruna B (2010) Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 12(4):407–412

    Article  PubMed  CAS  Google Scholar 

  48. Hashimoto M, Shinohara K, Wang J, Ikeuchi S, Yoshiba S, Meno C, Nonaka S, Takada S, Hatta K, Wynshaw-Boris A, Hamada H (2010) Planar polarization of node cells determines the rotational axis of node cilia. Nat Cell Biol 12(2):170–176

    Article  CAS  Google Scholar 

  49. Tabin CJ, Vogan KJ (2003) A two-cilia model for vertebrate left-right axis specification. Genes Dev 17(1):1–6

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435(7039):172–177

    Article  PubMed  CAS  Google Scholar 

  51. Collignon J, Varlet I, Robertson EJ (1996) Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381(6578):155–158

    Article  PubMed  CAS  Google Scholar 

  52. Lowe LA, Supp DM, Sampath K, Yokoyama T, Wright CV, Potter SS, Overbeek P, Kuehn MR (1996) Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381(6578):158–161

    Article  PubMed  CAS  Google Scholar 

  53. Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LS (1999) Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 96(9):5043–5048

    Article  PubMed  CAS  Google Scholar 

  54. Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N (1999) Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J Cell Biol 145(4):825–836

    Article  PubMed  CAS  Google Scholar 

  55. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP (2000) The Oak Ridge Polycystic Kidney (ORPK) disease gene is required for left-right axis determination. Development 127(11):2347–2355

    PubMed  CAS  Google Scholar 

  56. Francescatto L, Rothschild SC, Myers AL, Tombes RM (2010) The activation of membrane targeted CaMK-II in the zebrafish Kupffer’s vesicle is required for left-right asymmetry. Development 137(16):2753–2762

    Article  PubMed  CAS  Google Scholar 

  57. Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M, Hashiguchi H, Mochida K, Ohishi S, Kawabata M, Miyazono K, Whitman M, Hamada H (2000) Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Molecular cell 5(1):35–47

    Article  PubMed  CAS  Google Scholar 

  58. Yamamoto M, Meno C, Sakai Y, Shiratori H, Mochida K, Ikawa Y, Saijoh Y, Hamada H (2001) The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse. Genes Dev 15(10):1242–1256

    Article  PubMed  CAS  Google Scholar 

  59. Gaio U, Schweickert A, Fischer A, Garratt AN, Muller T, Ozcelik C, Lankes W, Strehle M, Britsch S, Blum M, Birchmeier C (1999) A role of the cryptic gene in the correct establishment of the left-right axis. Curr Biol 9(22):1339–1342

    Article  PubMed  CAS  Google Scholar 

  60. Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF (1999) The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97(1):121–132

    Article  PubMed  CAS  Google Scholar 

  61. Chen Y, Mironova E, Whitaker LL, Edwards L, Yost HJ, Ramsdell AF (2004) ALK4 functions as a receptor for multiple TGF beta-related ligands to regulate left-right axis determination and mesoderm induction in Xenopus. Dev Biol 268(2):280–294

    Article  PubMed  CAS  Google Scholar 

  62. Brennan J, Norris DP, Robertson EJ (2002) Nodal activity in the node governs left-right asymmetry. Genes Dev 16(18):2339–2344

    Article  PubMed  CAS  Google Scholar 

  63. Rankin CT, Bunton T, Lawler AM, Lee SJ (2000) Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 24(3):262–265

    Article  PubMed  CAS  Google Scholar 

  64. Shiratori H, Sakuma R, Watanabe M, Hashiguchi H, Mochida K, Sakai Y, Nishino J, Saijoh Y, Whitman M, Hamada H (2001) Two-step regulation of left-right asymmetric expression of Pitx2: initiation by nodal signaling and maintenance by Nkx2. Mol Cell 7(1):137–149

    Article  PubMed  CAS  Google Scholar 

  65. Yamamoto M, Mine N, Mochida K, Sakai Y, Saijoh Y, Meno C, Hamada H (2003) Nodal signaling induces the midline barrier by activating Nodal expression in the lateral plate. Development 130(9):1795–1804

    Article  PubMed  CAS  Google Scholar 

  66. Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, Noji S, Kondoh H, Hamada H (1998) lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94(3):287–297

    Article  PubMed  CAS  Google Scholar 

  67. Hamada H, Meno C, Watanabe D, Saijoh Y (2002) Establishment of vertebrate left-right asymmetry. Nat Rev 3(2):103–113

    Article  CAS  Google Scholar 

  68. Logan M, Pagan-Westphal SM, Smith DM, Paganessi L, Tabin CJ (1998) The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94(3):307–317

    Article  PubMed  CAS  Google Scholar 

  69. Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC, Hamada H, Noji S (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94(3):299–305

    Article  PubMed  CAS  Google Scholar 

  70. Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, Izpisua-Belmonte JC, Rosenfeld MG (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401(6750):279–282

    Article  PubMed  CAS  Google Scholar 

  71. Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12(11):938–943

    Article  PubMed  CAS  Google Scholar 

  72. Constam DB, Robertson EJ (2000) Tissue-specific requirements for the proprotein convertase furin/SPC1 during embryonic turning and heart looping. Development 127(2):245–254

    PubMed  CAS  Google Scholar 

  73. Krebs LT, Iwai N, Nonaka S, Welsh IC, Lan Y, Jiang R, Saijoh Y, O’Brien TP, Hamada H, Gridley T (2003) Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev 17(10):1207–1212

    Article  PubMed  CAS  Google Scholar 

  74. Raya A, Kawakami Y, Rodriguez-Esteban C, Buscher D, Koth CM, Itoh T, Morita M, Raya RM, Dubova I, Bessa JG, de la Pompa JL, Belmonte JC (2003) Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes Dev 17(10):1213–1218

    Article  PubMed  CAS  Google Scholar 

  75. Meyers EN, Martin GR (1999) Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285(5426):403–406

    Article  PubMed  CAS  Google Scholar 

  76. Boettger T, Wittler L, Kessel M (1999) FGF8 functions in the specification of the right body side of the chick. Curr Biol 9(5):277–280

    Article  PubMed  CAS  Google Scholar 

  77. Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458(7238):651–654

    Article  PubMed  CAS  Google Scholar 

  78. Hong SK, Dawid IB (2009) FGF-dependent left-right asymmetry patterning in zebrafish is mediated by Ier2 and Fibp1. Proc Natl Acad Sci USA 106(7):2230–2235

    Article  PubMed  CAS  Google Scholar 

  79. Tsukui T, Capdevila J, Tamura K, Ruiz-Lozano P, Rodriguez-Esteban C, Yonei-Tamura S, Magallon J, Chandraratna RA, Chien K, Blumberg B, Evans RM, Belmonte JC (1999) Multiple left-right asymmetry defects in Shh(-/-) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci USA 96(20):11376–11381

    Article  PubMed  CAS  Google Scholar 

  80. Zhang XM, Ramalho-Santos M, McMahon AP (2001) Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106(2):781–792

    Article  PubMed  CAS  Google Scholar 

  81. Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82(5):803–814

    Article  PubMed  CAS  Google Scholar 

  82. Sampath K, Cheng AM, Frisch A, Wright CV (1997) Functional differences among Xenopus nodal-related genes in left-right axis determination. Development 124(17):3293–3302

    PubMed  CAS  Google Scholar 

  83. Schilling TF, Concordet JP, Ingham PW (1999) Regulation of left-right asymmetries in the zebrafish by Shh and BMP4. Dev Biol 210(2):277–287

    Article  PubMed  CAS  Google Scholar 

  84. Tsiairis CD, McMahon AP (2009) An Hh-dependent pathway in lateral plate mesoderm enables the generation of left/right asymmetry. Curr Biol 19(22):1912–1917

    Article  PubMed  CAS  Google Scholar 

  85. Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8(2):174–189

    Article  PubMed  CAS  Google Scholar 

  86. Nakaya MA, Biris K, Tsukiyama T, Jaime S, Rawls JA, Yamaguchi TP (2005) Wnt3a links left-right determination with segmentation and anteroposterior axis elongation. Development 132(24):5425–5436

    Article  PubMed  CAS  Google Scholar 

  87. Maisonneuve C, Guilleret I, Vick P, Weber T, Andre P, Beyer T, Blum M, Constam DB (2009) Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 136(17):3019–3030

    Article  PubMed  CAS  Google Scholar 

  88. Oishi I, Kawakami Y, Raya A, Callol-Massot C, Izpisua Belmonte JC (2006) Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya. Nat Genet 38(11):1316–1322

    Article  PubMed  CAS  Google Scholar 

  89. Raya A, Kawakami Y, Rodriguez-Esteban C, Ibanes M, Rasskin-Gutman D, Rodriguez-Leon J, Buscher D, Feijo JA, Izpisua Belmonte JC (2004) Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 427(6970):121–128

    Article  PubMed  CAS  Google Scholar 

  90. Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K, Hamada H, Yost HJ, Rossant J, Bruneau BG (2007) Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci USA 104(3):846–851

    Article  PubMed  CAS  Google Scholar 

  91. Sakano D, Kato A, Parikh N, McKnight K, Terry D, Stefanovic B, Kato Y (2010) BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left-right patterning. Developmental Cell 18(3):450–462

    Article  PubMed  CAS  Google Scholar 

  92. Fiuza UM, Arias AM (2007) Cell and molecular biology of Notch. J Endocrinol 194(3):459–474

    Article  PubMed  CAS  Google Scholar 

  93. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    Article  PubMed  CAS  Google Scholar 

  94. Schwanbeck R, Martini S, Bernoth K, Just U (2010) The Notch signaling pathway: molecular basis of cell context dependency. Eur J Cell Biol published online

  95. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    Article  PubMed  CAS  Google Scholar 

  96. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689

    Article  PubMed  CAS  Google Scholar 

  97. Gordon WR, Roy M, Vardar-Ulu D, Garfinkel M, Mansour MR, Aster JC, Blacklow SC (2009) Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood 113(18):4381–4390

    Article  PubMed  CAS  Google Scholar 

  98. Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah NG, Israel A (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA 95(14):8108–8112

    Article  PubMed  CAS  Google Scholar 

  99. Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC (2004) Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol 24(21):9265–9273

    Article  PubMed  CAS  Google Scholar 

  100. Nichols JT, Miyamoto A, Weinmaster G (2007) Notch signaling–constantly on the move. Traffic 8(8):959–969

    Article  PubMed  CAS  Google Scholar 

  101. Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC (2007) Structural basis for autoinhibition of Notch. Nat Struct Mol Biol 14(4):295–300

    Article  PubMed  CAS  Google Scholar 

  102. Windler SL, Bilder D (2010) Endocytic internalization routes required for delta/notch signaling. Curr Biol 20(6):538–543

    Article  PubMed  CAS  Google Scholar 

  103. Zolkiewska A (2008) ADAM proteases: ligand processing and modulation of the Notch pathway. Cell Mol Life Sci 65(13):2056–2068

    Article  PubMed  CAS  Google Scholar 

  104. Selkoe DJ, Wolfe MS (2007) Presenilin: running with scissors in the membrane. Cell 131(2):215–221

    Article  PubMed  CAS  Google Scholar 

  105. Wolfe MS, Kopan R (2004) Intramembrane proteolysis: theme and variations. Science 305(5687):1119–1123

    Article  PubMed  CAS  Google Scholar 

  106. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T, Honjo T (1995) Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 5(12):1416–1423

    Article  PubMed  CAS  Google Scholar 

  107. Zweifel ME, Leahy DJ, Hughson FM, Barrick D (2003) Structure and stability of the ankyrin domain of the Drosophila Notch receptor. Protein Sci 12(11):2622–2632

    Article  PubMed  CAS  Google Scholar 

  108. Wilson JJ, Kovall RA (2006) Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124(5):985–996

    Article  PubMed  CAS  Google Scholar 

  109. Nam Y, Weng AP, Aster JC, Blacklow SC (2003) Structural requirements for assembly of the CSL intracellular Notch1. Mastermind-like 1 transcriptional activation complex. J Biol Chem 278(23):21232–21239

    Article  PubMed  CAS  Google Scholar 

  110. Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E, Ciechanover A, Israel A (2001) Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 276(37):34371–34378

    Article  PubMed  CAS  Google Scholar 

  111. Weng AP, Ferrando AA, Lee W, JPt Morris, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271

    Article  PubMed  CAS  Google Scholar 

  112. D’Souza B, Meloty-Kapella L, Weinmaster G (2010) Canonical and non-canonical Notch ligands. Curr Top Dev Biol 92:73–129

    Article  PubMed  CAS  Google Scholar 

  113. Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y, Hirai H (1999) Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274(46):32961–32969

    Article  PubMed  CAS  Google Scholar 

  114. Parks AL, Stout JR, Shepard SB, Klueg KM, Dos Santos AA, Parody TR, Vaskova M, Muskavitch MA (2006) Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics 174(4):1947–1961

    Article  PubMed  CAS  Google Scholar 

  115. Komatsu H, Chao MY, Larkins-Ford J, Corkins ME, Somers GA, Tucey T, Dionne HM, White JQ, Wani K, Boxem M, Hart AC (2008) OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. PLoS Biol 6(8):e196

    Article  PubMed  CAS  Google Scholar 

  116. D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of Notch ligands. Oncogene 27(38):5148–5167

    Article  PubMed  CAS  Google Scholar 

  117. Kovall RA, Hendrickson WA (2004) Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J 23(17):3441–3451

    Article  PubMed  CAS  Google Scholar 

  118. Nellesen DT, Lai EC, Posakony JW (1999) Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Dev Biol 213(1):33–53

    Article  PubMed  CAS  Google Scholar 

  119. Lai EC (2002) Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 3(9):840–845

    Article  PubMed  CAS  Google Scholar 

  120. Moshkin YM, Kan TW, Goodfellow H, Bezstarosti K, Maeda RK, Pilyugin M, Karch F, Bray SJ, Demmers JA, Verrijzer CP (2009) Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. Mol Cell 35(6):782–793

    Article  PubMed  CAS  Google Scholar 

  121. Pajerowski AG, Shapiro MJ, Gwin K, Sundsbak R, Nelson-Holte M, Medina K, Shapiro VS (2010) Adult hematopoietic stem cells require NKAP for maintenance and survival. Blood 116(15):2684–2693

    Article  PubMed  CAS  Google Scholar 

  122. Hsieh JJ, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD (1996) Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol Cell Biol 16(3):952–959

    PubMed  CAS  Google Scholar 

  123. Lubman OY, Ilagan MX, Kopan R, Barrick D (2007) Quantitative dissection of the Notch:CSL interaction: insights into the Notch-mediated transcriptional switch. J Mol Biol 365(3):577–589

    Article  PubMed  CAS  Google Scholar 

  124. Bertagna A, Toptygin D, Brand L, Barrick D (2008) The effects of conformational heterogeneity on the binding of the Notch intracellular domain to effector proteins: a case of biologically tuned disorder. Biochem Soc Trans 36(Pt 2):157–166

    Article  PubMed  CAS  Google Scholar 

  125. Nam Y, Sliz P, Song L, Aster JC, Blacklow SC (2006) Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124(5):973–983

    Article  PubMed  CAS  Google Scholar 

  126. Petcherski AG, Kimble J (2000) Mastermind is a putative activator for Notch. Curr Biol 10(13):R471–R473

    Article  PubMed  CAS  Google Scholar 

  127. Kurooka H, Honjo T (2000) Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem 275(22):17211–17220

    Article  PubMed  CAS  Google Scholar 

  128. Wallberg AE, Pedersen K, Lendahl U, Roeder RG (2002) p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 22(22):7812–7819

    Article  PubMed  CAS  Google Scholar 

  129. Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA (2002) Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16(11):1397–1411

    Article  PubMed  CAS  Google Scholar 

  130. Gause M, Eissenberg JC, Macrae AF, Dorsett M, Misulovin Z, Dorsett D (2006) Nipped-A, the Tra1/TRRAP subunit of the Drosophila SAGA and Tip60 complexes, has multiple roles in Notch signaling during wing development. Mol Cell Biol 26(6):2347–2359

    Article  PubMed  CAS  Google Scholar 

  131. Kadam S, Emerson BM (2003) Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell 11(2):377–389

    Article  PubMed  CAS  Google Scholar 

  132. Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16(4):509–520

    Article  PubMed  CAS  Google Scholar 

  133. Przemeck GK, Heinzmann U, Beckers J, Hrabe de Angelis M (2003) Node and midline defects are associated with left-right development in Delta1 mutant embryos. Development 130(1):3–13

    Article  PubMed  CAS  Google Scholar 

  134. Saijoh Y, Oki S, Ohishi S, Hamada H (2003) Left-right patterning of the mouse lateral plate requires nodal produced in the node. Dev Biol 256(1):160–172

    Article  PubMed  CAS  Google Scholar 

  135. Adachi H, Saijoh Y, Mochida K, Ohishi S, Hashiguchi H, Hirao A, Hamada H (1999) Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev 13(12):1589–1600

    Article  PubMed  CAS  Google Scholar 

  136. Norris DP, Robertson EJ (1999) Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev 13(12):1575–1588

    Article  PubMed  CAS  Google Scholar 

  137. Gourronc F, Ahmad N, Nedza N, Eggleston T, Rebagliati M (2007) Nodal activity around Kupffer’s vesicle depends on the T-box transcription factors Notail and Spadetail and on Notch signaling. Dev Dyn 236(8):2131–2146

    Article  PubMed  CAS  Google Scholar 

  138. Hashimoto H, Rebagliati M, Ahmad N, Muraoka O, Kurokawa T, Hibi M, Suzuki T (2004) The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development 131(8):1741–1753

    Article  PubMed  CAS  Google Scholar 

  139. Hojo M, Takashima S, Kobayashi D, Sumeragi A, Shimada A, Tsukahara T, Yokoi H, Narita T, Jindo T, Kage T, Kitagawa T, Kimura T, Sekimizu K, Miyake A, Setiamarga D, Murakami R, Tsuda S, Ooki S, Kakihara K, Naruse K, Takeda H (2007) Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer’s vesicle. Dev Growth Differ 49(5):395–405

    Article  PubMed  CAS  Google Scholar 

  140. Hadjantonakis AK, Pisano E, Papaioannou VE (2008) Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS One 3(6):e2511

    Article  PubMed  CAS  Google Scholar 

  141. Lopes SS, Lourenco R, Pacheco L, Moreno N, Kreiling J, Saude L (2010) Notch signalling regulates left-right asymmetry through ciliary length control. Development 137(21):3625–3632

    Article  PubMed  CAS  Google Scholar 

  142. Hilton EN, Manson FD, Urquhart JE, Johnston JJ, Slavotinek AM, Hedera P, Stattin EL, Nordgren A, Biesecker LG, Black GC (2007) Left-sided embryonic expression of the BCL-6 corepressor, BCOR, is required for vertebrate laterality determination. Hum Mol Genet 16(14):1773–1782

    Article  PubMed  CAS  Google Scholar 

  143. Cave JW, Loh F, Surpris JW, Xia L, Caudy MA (2005) A DNA transcription code for cell-specific gene activation by notch signaling. Curr Biol 15(2):94–104

    Article  PubMed  CAS  Google Scholar 

  144. Furriols M, Bray S (2001) A model Notch response element detects Suppressor of Hairless-dependent molecular switch. Curr Biol 11(1):60–64

    Article  PubMed  CAS  Google Scholar 

  145. Neves A, English K, Priess JR (2007) Notch-GATA synergy promotes endoderm-specific expression of ref-1 inC. elegans. Development 134(24):4459–4468

    Article  PubMed  CAS  Google Scholar 

  146. Ong CT, Cheng HT, Chang LW, Ohtsuka T, Kageyama R, Stormo GD, Kopan R (2006) Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability. J Biol Chem 281(8):5106–5119

    Article  PubMed  CAS  Google Scholar 

  147. Bernard F, Krejci A, Housden B, Adryan B, Bray SJ (2010) Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 137(16):2633–2642

    Article  PubMed  CAS  Google Scholar 

  148. Masserdotti G, Badaloni A, Green YS, Croci L, Barili V, Bergamini G, Vetter ML, Consalez GG (2010) ZFP423 coordinates Notch and bone morphogenetic protein signaling, selectively up-regulating Hes5 gene expression. J Biol Chem 285(40):30814–30824

    Article  PubMed  CAS  Google Scholar 

  149. Danilchik MV, Brown EE, Riegert K (2006) Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry? Development 133(22):4517–4526

    Article  PubMed  CAS  Google Scholar 

  150. Qiu D, Cheng SM, Wozniak L, McSweeney M, Perrone E, Levin M (2005) Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry. Dev Dyn 234(1):176–189

    Article  PubMed  CAS  Google Scholar 

  151. Aw S, Adams DS, Qiu D, Levin M (2008) H, K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry. Mech Dev 125(3–4):353–372

    Article  PubMed  CAS  Google Scholar 

  152. Yost HJ (1991) Development of the left-right axis in amphibians. Ciba Found Symp 162:165–176 discussion 176-181

    PubMed  CAS  Google Scholar 

  153. Bisgrove BW, Essner JJ, Yost HJ (1999) Regulation of midline development by antagonism of lefty and nodal signaling. Development 126(14):3253–3262

    PubMed  CAS  Google Scholar 

  154. Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A, Hadley DW, Tifft C, Zhang L, Wilkie AO, van der Smagt JJ, Gorlin RJ, Burgess SM, Bardwell VJ, Black GC, Biesecker LG (2004) Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet 36(4):411–416

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Drs. Hiroshi Hamada and Raymond Habas for their helpful suggestions on the manuscript and current and former members of the Kato lab for assistance and discussion. Our work is supported by a grant from the National Institute of General Medical Sciences (GM087641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, Y. The multiple roles of Notch signaling during left-right patterning. Cell. Mol. Life Sci. 68, 2555–2567 (2011). https://doi.org/10.1007/s00018-011-0695-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0695-5

Keywords

Navigation