Skip to main content

Advertisement

Log in

Highly reactive oxygen species: detection, formation, and possible functions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The so-called reactive oxygen species (ROS) are defined as oxygen-containing species that are more reactive than O2 itself, which include hydrogen peroxide and superoxide. Although these are quite stable, they may be converted in the presence of transition metal ions, such as Fe(II), to the highly reactive oxygen species (hROS). hROS may exist as free hydroxyl radicals (HO·), as bound (“crypto”) radicals or as Fe(IV)-oxo (ferryl) species and the somewhat less reactive, non-radical species, singlet oxygen. This review outlines the processes by which hROS may be formed, their damaging potential, and the evidence that they might have signaling functions. Since our understanding of the formation and actions of hROS depends on reliable procedures for their detection, particular attention is given to procedures for hROS detection and quantitation and their applicability to in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jameson GNL, Jameson RF, Linert W (2004) New insights into iron release from ferritin: direct observation of the neurotoxin 6-hydroxydopamine entering ferritin and reaching redox equilibrium with the iron core. Org Biomol Chem 2:2346–2351

    PubMed  CAS  Google Scholar 

  2. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    PubMed  CAS  Google Scholar 

  3. Moskovitz J, Yim MB, Chock PB (2002) Free radicals and disease. Arch Biochem Biophys 397:354–359

    PubMed  CAS  Google Scholar 

  4. Rush JD, Koppenol WH (1988) Reactions of iron(II) nitrilotriacetate and iron(II) ethylenediamine-N, N′-diacetate complexes with hydrogen peroxide. J Am Chem Soc 110:4957–4963

    CAS  Google Scholar 

  5. Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131

    CAS  Google Scholar 

  6. Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888

    PubMed  CAS  Google Scholar 

  7. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    PubMed  CAS  Google Scholar 

  8. Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 8:662–680

    Google Scholar 

  9. Wood PM (1988) The potential diagram for oxygen at pH 7. Biochem J 253:287–289

    PubMed  CAS  Google Scholar 

  10. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Ann Rev Biochem 77:755–776

    PubMed  CAS  Google Scholar 

  11. Pace GW, Leaf CD (1995) The role of oxidative stress in HIV disease. Free Radic Biol Med 19:523–528

    PubMed  CAS  Google Scholar 

  12. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    PubMed  CAS  Google Scholar 

  13. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    PubMed  CAS  Google Scholar 

  14. Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes-associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24

    PubMed  CAS  Google Scholar 

  15. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  16. Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780:1362–1367

    PubMed  CAS  Google Scholar 

  17. Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, Wong AW (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108:4–18

    PubMed  CAS  Google Scholar 

  18. Beckman KB, Ames BN (1988) The free radical theory of aging matures. Physiol Rev 78:547–581

    Google Scholar 

  19. Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21

    PubMed  CAS  Google Scholar 

  20. De la Fuente M (2002) Effects of antioxidants on immune system ageing. Eur J Clin Nutr 56(Suppl 3):S5–S8

    PubMed  Google Scholar 

  21. Stone JR, Yang S (2004) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270

    Google Scholar 

  22. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    PubMed  Google Scholar 

  23. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–778

    PubMed  CAS  Google Scholar 

  24. Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG (2010) Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140:517–528

    PubMed  CAS  Google Scholar 

  25. Saran M, Michel C, Stettmaier K, Bors W (2000) Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions. Free Radic Res 33:567–579

    PubMed  CAS  Google Scholar 

  26. De Grey AD (2002) HO2*: the forgotten radical. DNA Cell Biol 21:251–257

    PubMed  Google Scholar 

  27. Linert W, Bridge MH, Huber M, Bjugstad KB, Grossman S, Arendash GW (1999) In vitro and in vivo studies investigating possible antioxidant actions of nicotine: relevance to Parkinson’s and Alzheimer’s diseases. Biochim Biophys Acta 1454:143–152

    PubMed  CAS  Google Scholar 

  28. Freinbichler W, Tipton KF, Della Corte L, Linert W (2009) Mechanistic aspects of the Fenton reaction under conditions approximated to the extracellular fluid. J Inorg Biochem 103:28–34

    PubMed  CAS  Google Scholar 

  29. Wink DA, Wink CB, Nims RW, Ford PC (1994) Oxidizing intermediates generated in the Fenton reagent: kinetic arguments against the intermediacy of the hydroxyl radical. Environ Health Perspect 102(Suppl 3):11–15

    PubMed  CAS  Google Scholar 

  30. Koppenol WH, Liebman JF (1984) The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2 +). J Phys Chem 88:99–101

    CAS  Google Scholar 

  31. Merkofer M, Kissner R, Hider RC, Brunk UT, Koppenol WH (2006) Fenton chemistry and iron chelation under physiologically relevant conditions: electrochemistry and kinetics. Chem Res Toxicol 19:1263–1269

    PubMed  CAS  Google Scholar 

  32. Kremer ML (2000) Is *OH the active Fenton intermediate in the oxidation of ethanol? J Inorg Biochem 78:255–257

    PubMed  CAS  Google Scholar 

  33. Halliwell B, Gutteridge JM (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307:108–112

    PubMed  CAS  Google Scholar 

  34. Jameson GNL, Linert W (2001) The oxidation of 6-hydroxydopamine in aqueous solution. Part 2. Speciation and product distribution with iron(III) as oxidant. J Chem Soc, Perkin Trans 2:563–568

    Google Scholar 

  35. Jameson GNL, Kudryavtsev AB, Linert W (2001) The oxidation of 6-hydroxydopamine in aqueous solution. Part 1. The formation of three metastable quinones at low pH. J Chem Soc, Perkin Trans 2:557–562

    Google Scholar 

  36. Welch KD, Davis TZ, Aust StD (2002) Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators. Arch Biochem Biophys 397:360–369

    PubMed  CAS  Google Scholar 

  37. Duesterberg CK, Cooper WJ, Waite T (2005) Fenton-mediated oxidation in the presence and absence of oxygen. Environ Sci Technol 39:5052–5058

    PubMed  CAS  Google Scholar 

  38. Takeshita K, Ozawa T (2004) Recent progress in in vivo ESR spectroscopy. J Radiat Res 45:373–384

    PubMed  CAS  Google Scholar 

  39. Kopáni M, Celec P, Danisovic L, Michalka P, Biró C (2006) Oxidative stress and electron spin resonance. Clin Chim Acta 364:61–66

    PubMed  Google Scholar 

  40. Rush JD, Koppenol WH (1986) Oxidizing Intermediates in the reaction of ferrous EDTA with hydrogen peroxide. J Biol Chem 261:6730–6733

    PubMed  CAS  Google Scholar 

  41. Di Matteo V, Pieruccia M, Di Giovanni G, Di Santo A, Poggia A, Benigno A, Esposito E (2006) Aspirin protects striatal dopaminergic neurons from neurotoxin-induced degeneration: an in vivo microdialysis study. Brain Res 1095:167–177

    PubMed  CAS  Google Scholar 

  42. Yamazaki I, Piette LH (1990) ESR spin-trapping studies on the reaction of Fe2+ ions with H202-reactive species in oxygen toxicity in biology. J Biol Chem 265:13589–13594

    PubMed  CAS  Google Scholar 

  43. Freinbichler W, Colivicchi MA, Fattori M, Ballini C, Tipton KF, Linert W, Della Corte L (2008) Validation of a robust and sensitive method for detecting hydroxyl radical formation together with evoked neurotransmitter release in brain microdialysis. J Neurochem 105:738–749

    PubMed  CAS  Google Scholar 

  44. Freinbichler W, Bianchi L, Colivicchi MA, Ballini C, Tipton KF, Linert W, Della Corte L (2008) The detection of hydroxyl radicals in vivo. J Inorg Biochem 102:1329–1333

    PubMed  CAS  Google Scholar 

  45. Schafer FQ, Qian SY, Buettner GR (2000) Iron and free radical oxidations in cell membranes. Cell Mol Biol (Noisy-le-grand) 46:657–662

    CAS  Google Scholar 

  46. Agil A, Fuller CJ, Jialal I (1995) Susceptibility of plasma to ferrous iron/hydrogen peroxide-mediated oxidation: demonstration of a possible Fenton reaction. Clin Chem 41:220–225

    PubMed  CAS  Google Scholar 

  47. Witte I, Zhu BZ, Lueken A, Magnani D, Stossberg H, Chevion M (2000) Protection by desferrioxamine and other hydroxamic acids against tetrachlorohydroquinone-induced cyto- and genotoxicity in human fibroblasts. Free Radic Biol Med 28:693–700

    PubMed  CAS  Google Scholar 

  48. Antunes F, Cadenas E (2001) Cellular titration of apoptosis with steady state concentrations of H(2)O(2): submicromolar levels of H(2)O(2) induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 30:1008–1018

    PubMed  CAS  Google Scholar 

  49. Dikalova AE, Kadiiska MB, Mason RP (2001) An in vivo ESR spin-trapping study: free radical generation in rats from formate intoxication–role of the Fenton reaction. Proc Natl Acad Sci USA 98:13549–13553

    PubMed  CAS  Google Scholar 

  50. Kuppusamy P, Zweier JL (1989) Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem 264:9880–9884

    PubMed  CAS  Google Scholar 

  51. Britigan BE, Pou S, Rosen GM, Lilleg DM, Buettner GR (1990) Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. The confounding problem of adventitious iron bound to xanthine oxidase. J Biol Chem 265:17533–17538

    PubMed  CAS  Google Scholar 

  52. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  53. Szasz T, Thakali K, Fink GD, Watts SW (2007) A comparison of arteries and veins in oxidative stress: producers, destroyers, function, and disease. Exp Biol Med (Maywood) 232:27–37

    CAS  Google Scholar 

  54. Cohen MS, Britigan BE, Pou S, Rosen GM (1991) Application of spin trapping to human phagocytic cells: insight into conditions for formation and limitation of hydroxyl radical. Free Radic Res Commun 12:17–25

    PubMed  Google Scholar 

  55. Hogg N, Darley-Usmar VM, Wilson MT, Moncada S (1992) Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J 281:419–424

    PubMed  CAS  Google Scholar 

  56. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc NatI Acad Sci USA 87:1620–1624

    CAS  Google Scholar 

  57. Rosen GM, Pou S, Ramos CL, Cohen MS, Britigan BE (1995) Free radicals and phagocytic cells. FASEB J 9:200–209

    PubMed  CAS  Google Scholar 

  58. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    PubMed  CAS  Google Scholar 

  59. Long CA, Bielski BH (1980) Rate of reaction of superoxide radical with chloride-containing species. J Phys Chem 84:555–557

    CAS  Google Scholar 

  60. Ramos CL, Pou S, Britigan BE, Cohen MS, Rosen GM (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem 267:8307–8312

    PubMed  CAS  Google Scholar 

  61. Candeias LP, Patel KB, Stratford MR, Wardman P (1993) Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett 333:151–153

    PubMed  CAS  Google Scholar 

  62. Chen SX, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem 260:726–735

    PubMed  CAS  Google Scholar 

  63. Kellogg EW, Fridovich I (1975) Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 250:8812–8817

    PubMed  CAS  Google Scholar 

  64. Khan AU, Kasha M (1994) Singlet molecular oxygen in the Haber-Weiss reaction. Proc Natl Acad Sci USA 91:12365–12367

    PubMed  CAS  Google Scholar 

  65. Martinez GR, Di Mascio P, Bonini MG, Augusto O, Briviba K, Sies H, Maurer P, Röthlisberger U, Herold S, Koppenol WH (2000) Peroxynitrite does not decompose to singlet oxygen (1DgO2) and nitroxyl (NO). Proc Natl Acad Sci USA 97:10307–10312

    PubMed  CAS  Google Scholar 

  66. Kumar V, Tripathi MR, Kumar M, Shukla G, Dwivedi S, Sharma V (2009) Studies on production and chemical property of singlet oxygen and superoxide radical by dyestuffs. E-J Chem 6(S1):S79–S86

    CAS  Google Scholar 

  67. Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, singlet oxygen sensor green. J Exp Bot 57:1725–1734

    PubMed  CAS  Google Scholar 

  68. Xia Q, Yin JJ, Fu PP, Boudreau MD (2007) Photo-irradiation of Aloe vera by UVA-formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation. Toxicol Lett 168:165–175

    PubMed  CAS  Google Scholar 

  69. Fu PP, Xia Q, Yin JJ, Cherng SH, Yan J, Mei N, Chen T, Boudreau MD, Howard PC, Wamer WG (2007) Photodecomposition of vitamin A and photobiological implications for the skin. Photochem Photobiol 83:409–424

    PubMed  CAS  Google Scholar 

  70. Egorov SY, Krasnovsky AA Jr, Bashtanov MY, Mironov EA, Ludnikova TA, Kritsky MS (1999) Photosensitization of singlet oxygen formation by pterins and flavins. Time-resolved studies of oxygen phosphorescence under laser excitation. Biochemistry (Mosc) 64:1117–1121

    CAS  Google Scholar 

  71. Kanofsky JR, Sima P (1991) Singlet oxygen production from the reactions of ozone with biological molecules. J Biol Chem 266:9039–9042

    PubMed  CAS  Google Scholar 

  72. Simon F, Varela D, Eguiguren AL, Díaz LF, Sala F, Stutzin A (2004) Hydroxyl radical activation of a Ca2+-sensitive non selective cation channel involved in epithelial cell necrosis. Am J Physiol Cell Physiol 287:963–970

    Google Scholar 

  73. Burlando B, Viarengo A (2005) Ca2+ is mobilized by hydroxyl radical but not by superoxide in RTH-149 cells: the oxidative switching-on of Ca2+ signalling. Cell Calcium 38:507–513

    PubMed  CAS  Google Scholar 

  74. Murphy RM, Dutka TL, Lamb GD (2008) Hydroxyl radical and glutathione interactions alter calcium sensitivity and maximum force of the contractile apparatus in rat skeletal muscle fibres. J Physiol 586:2203–2216

    PubMed  CAS  Google Scholar 

  75. Ishii M, Shimizu S, Hara Y, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y (2006) Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat b-cell line RIN-5F. Cell Calcium 39:487–494

    PubMed  CAS  Google Scholar 

  76. Reiter RJ, Tan DX, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress. A review. J Biomed Sci 7:444–458

    PubMed  CAS  Google Scholar 

  77. Forman HJ (2007) Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic Biol Med 42:926–932

    PubMed  CAS  Google Scholar 

  78. Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 93:13635–13640

    PubMed  CAS  Google Scholar 

  79. McCormick ML, Buettner GR, Britigan BE (1998) Endogenous superoxide dismutase levels regulate iron-dependent hydroxyl radical formation in Escherichia coli exposed to hydrogen peroxide. J Bacteriol 180:622–625

    PubMed  CAS  Google Scholar 

  80. Liochev SI, Fridovich I (1994) The role of O2·− in the production of: in vitro and in vivo. Free Radic Biol Med 16:29–33

    PubMed  CAS  Google Scholar 

  81. Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    PubMed  CAS  Google Scholar 

  82. Rouault TA, Tong WH (2008) Iron–sulfur cluster biogenesis and human disease. Trends Genet 24:398–407

    PubMed  CAS  Google Scholar 

  83. Schneider C, Porter NA, Brash AR (2008) Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem 283:15539–15543

    PubMed  CAS  Google Scholar 

  84. Dwivedi S, Sharma A, Patrick B, Sharma R, Awasthi YC (2007) Role of 4-hydroxynonenal and its metabolites in signaling. Redox Rep 12:4–10

    PubMed  Google Scholar 

  85. Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11

    PubMed  Google Scholar 

  86. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5 Suppl):715S–724S

    PubMed  CAS  Google Scholar 

  87. Rahman I, Biswas SK (2004) Non-invasive biomarkers of oxidative stress: reproducibility and methodological issues. Redox Rep 9:125–143

    PubMed  CAS  Google Scholar 

  88. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    PubMed  CAS  Google Scholar 

  89. Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    PubMed  CAS  Google Scholar 

  90. Gracanin M, Hawkins CL, Pattison DI, Davies MJ (2009) Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Free Radic Biol Med 47:92–102

    PubMed  CAS  Google Scholar 

  91. Zhang X-H (2010) Regulation of protein function by residue oxidation. Proteomics Insights 3:17–24

    CAS  Google Scholar 

  92. Bergeron F, Auvré F, Radicella JP, Ravanat JL (2010) HO* radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases. Proc Natl Acad Sci USA 107:5528–5533

    PubMed  CAS  Google Scholar 

  93. Cavalcante AK, Martinez GR, Di Mascio P, Menck CF, Agnez-Lima LF (2002) Cytotoxicity and mutagenesis induced by singlet oxygen in wild type and DNA repair deficient Escherichia coli strains. DNA Repair (Amst) 1:1051–1056

    CAS  Google Scholar 

  94. Mishra PC, Singh AK, Suha S (2005) Interaction of singlet oxygen and superoxide radical anion with guanine and formation of its mutagenic modification 8-oxoguanine. Int J Quantum Chem 102:282–301

    CAS  Google Scholar 

  95. Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, Choyke PL, Pooput C, Kirk KL, Buettner GR, Levine M (2007) Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA 104:8749–8754

    PubMed  CAS  Google Scholar 

  96. Jensen SJ, Csizmadia IG (2001) Hydroxyl radicals piggybacking on hydrogen carbonate. Phys Chem Lett 431:633–637

    Google Scholar 

  97. Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50:1129–1146

    PubMed  CAS  Google Scholar 

  98. Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541

    PubMed  CAS  Google Scholar 

  99. Mishin VM, Thomas PE (2004) Characterization of hydroxyl radical formation by microsomal enzymes using a water-soluble trap, terephthalate. Biochem Pharmacol 68:747–752

    PubMed  CAS  Google Scholar 

  100. Yan EB, Unthank JK, Castillo-Melendez M, Miller SL, Langford SJ, Walker DW (2005) A novel Method for in vivo hydroxyl radical measurement by microdialysis in fetal sheep brain, in utero. J Appl Physiol 98:2304–2310

    PubMed  CAS  Google Scholar 

  101. Lang K, Wagnerova DM, Brodilova J (1994) The role of hydrogen peroxide in dioxygen induced hydroxylation of salicylic acid. Collect Czechoslov Chem Commun 59:2447–2453

    CAS  Google Scholar 

  102. Lunak S, Muzart J, Brodilova J (1994) Photochemical hydroxylation of salicylic acid derivatives with hydrogen peroxide, catalyzed with Fe(III) and sensitised with methylene blue. Collect Czechoslov Chem Commun 59:905–912

    CAS  Google Scholar 

  103. Maskos Z, Rush JD, Koppenol WH (1990) The hydroxylation of the salicylate anion by a Fenton reaction and T-radiolysis: a consideration of the respective mechanisms. Free Radic Biol Med 8:153–162

    PubMed  CAS  Google Scholar 

  104. Salzberg-Brenhouse HC, Chen EY, Emerich DF, Baldwin S, Hogeland K, Ranelli S, Lafreniere D, Perdomo B, Novak L, Kladis T, Fu K, Basile AS, Kordower JH, Bartus RT (2003) Inhibitors of cyclooxygenase-2, but not cyclooxygenase-1 provide structural and functional protection against quinolinic acid-induced neurodegeneration. J Pharmacol Exp Ther 306:218–228

    PubMed  CAS  Google Scholar 

  105. Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE, Langenbach R, Taniura S, Hong JS (2004) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 88:939–947

    PubMed  CAS  Google Scholar 

  106. Catania A, Arnold J, Macaluso A, Hiltz ME, Lipton JM (1991) Inhibition of acute inflammation in the periphery by central action of salicylates. Proc Natl Acad Sci USA 88:8544–8547

    PubMed  CAS  Google Scholar 

  107. Borthwick GM, Johnson AS, Partington M, Burn J, Wilson R, Arthur HM (2006) Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a Cox-independent mechanism. FASEB J 20:2009–2016

    PubMed  CAS  Google Scholar 

  108. Themann C, Teismann P, Kuschinsky K, Ferger B (2001) Comparison of two independent aromatic hydroxylation assays in combination with intracerebral microdialysis to determine hydroxyl free radicals. J Neurosci Methods 108:57–64

    PubMed  CAS  Google Scholar 

  109. Kaur H, Halliwell B (1994) Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radicals. Anal Biochem 220:11–15

    PubMed  CAS  Google Scholar 

  110. Moreno S, Nardacci R, Cimini A, Ceru MP (1999) Immunocytochemical localization of d-amino acid oxidase in rat brain. J Neurocytol 28:169–185

    PubMed  CAS  Google Scholar 

  111. Reddy S, Halliwel B, Jones AD, Longhurst JC (1999) The use of phenylalanine to detect hydroxyl radical production in vivo: a cautionary note. Free Radic Biol Med 27:1465

    PubMed  CAS  Google Scholar 

  112. Ferger B, Themann C, Rose S, Halliwell B, Jenner P (2001) 6-Hydroxydopamine increases the hydroxylation and nitration of phenylalanine in vivo: implication of peroxynitrite formation. J Neurochem 78:509–514

    PubMed  CAS  Google Scholar 

  113. Liu M, Liu S, Peterson SL, Miyake M, Liu KJ (2002) On the application of 4-hydroxybenzoic acid as a trapping agent to study hydroxyl radical generation during cerebral ischemia and reperfusion source. Mol Cell Biochem 234:379–385

    PubMed  Google Scholar 

  114. Marklund N, Clausen F, Lewander T, Hillered L (2001) Monitoring of reactive oxygen species production after traumatic brain injury in rats with microdialysis and the 4-hydroxybenzoic acid trapping method. J Neurotrauma 18:1217–1227

    PubMed  CAS  Google Scholar 

  115. Kalén A, Appelkvist E-L, Chojnacki T, Dallner G (1990) Nonaprenyl-4-hydroxybenzoate transferase, an enzyme involved in ubiquinone biosynthesis, in the endoplasmic reticulum–Golgi system of rat liver. J Biol Chem 265:1158–1164

    PubMed  Google Scholar 

  116. Matthews RW (1980) The radiation chemistry of the terephthalate dosimeter. Radiat Res 83:27–41

    PubMed  CAS  Google Scholar 

  117. Schimmel M, Bauer G (2002) Proapoptotic and redox state-related signaling of reactive oxygen species generated by transformed fibroblasts. Oncogene 21:5886–5896

    PubMed  CAS  Google Scholar 

  118. Barreto JC, Smith GS, Strobel NH, McQuillin PA, Miller TA (1995) Terephthalic acid: a dosimeter for the detection of hydroxyl radicals in vitro. Life Sci 56:PL89–PL96

    PubMed  CAS  Google Scholar 

  119. Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeira A, Muñoz-Patiño AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612

    PubMed  CAS  Google Scholar 

  120. Saran M, Summer KH (1999) Assaying for hydroxyl radicals: hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radic Res 31:429–436

    PubMed  CAS  Google Scholar 

  121. Dai GD, Cui LB, Song L, Zhao RZ, Chen JF, Wang YB, Chang HC, Wang XR (2006) Metabolism of terephthalic acid and its effects on CYP4B1 induction. Biomed Environ Sci 19:8–14

    PubMed  CAS  Google Scholar 

  122. OECD SIDS (2001) Terephthalic acid (TPA): initial assessment report. For 12th SIAM (Paris, France June 2001), United Nations Environment Programme (UNEP) Publications, Nairobi

  123. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  124. Togashi H, Shinzawa H, Matsuo T, Takeda Y, Takahashi T, Aoyama M, Oikawa K, Kamada H (2000) Analysis of hepatitic oxidative stress status by electron spin resonance spectroscopy and imaging. Free Radic Biol Med 28:846–853

    PubMed  CAS  Google Scholar 

  125. Kopáni M, Celec P, Danisovic L, Michalka P, Biró C (2006) Oxidative stress and electron spin resonance. Clin Chim Acta 364:61–66

    PubMed  Google Scholar 

  126. Swartz HM, Khan N, Khramtsov VV (2007) Use of electron paramagnetic resonance spectroscopy to evaluate the redox state in vivo. Antioxid Redox Signal 9:1757–1771

    PubMed  CAS  Google Scholar 

  127. Ueda Y, Doi T, Nagatomo K, Nakajim A (2007) In vivo activation of N-methyl-d-aspartate receptors generates free radicals and reduces antioxidant ability in the rat hippocampus: experimental protocol of in vivo ESR spectroscopy and microdialysis for redox status evaluation. Brain Res 1178:20–27

    PubMed  CAS  Google Scholar 

  128. Gallez B, Swartz HM (2004) In vivo EPR: when, how and why? NMR Biomed 17:223–225

    PubMed  CAS  Google Scholar 

  129. Utsumi H, Yasukawa K, Soeda T, Yamada KI, Shigemi R, Yao T, Tsuneyoshi M (2006) Noninvasive mapping of reactive oxygen species by in vivo electron spin resonance spectroscopy in indomethacin-induced gastric ulcers in rats. J Pharmacol Exp Ther 317:228–235

    PubMed  CAS  Google Scholar 

  130. Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end of the beginning. Free Radic Res 31:261–272

    PubMed  CAS  Google Scholar 

  131. Kohen P, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    PubMed  CAS  Google Scholar 

  132. Kim C, Lee KP, Baruah A, Nater M, Göbel C, Feussner I, Apel K (2009) 1O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid. Proc Natl Acad Sci USA 106:9920–9924

    PubMed  CAS  Google Scholar 

  133. Obata T, Inada T, Yamanaka Y (1997) Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation by antidepressant drugs in the rat. Neurosci Res Commun 21:223–229

    CAS  Google Scholar 

  134. Camarero J, Sanchez V, O’Shea E, Green AR, Colada MI (2002) Studies, using in vivo microdialysis, on the effect of the dopamine uptake inhibitor GBR 12909 on 3, 4-methylenedioxymethamphetamine (‘ecstasy’)-induced dopamine release and free radical formation in the mouse striatum. J Neurochem 81:961–972

    PubMed  CAS  Google Scholar 

  135. Mason RB, Pluta RM, Walbridge S, Wink DA, Oldfield EH, Boock RJ (2000) Production of reactive oxygen species after reperfusion in vitro and in vivo: protective effect of nitric oxide. J Neurosurg 93:99–107

    PubMed  CAS  Google Scholar 

  136. Montgomery J, Ste-Marie L, Boismenu D, Vachon L (1995) Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited. Free Radic Biol Med 19:927–933

    PubMed  CAS  Google Scholar 

  137. Clapp-Lilly KL, Roberts RC, Duffy LK, Irons KP, Hu Y, Drew KL (1999) An ultrastructural analysis of tissue surrounding a microdialysis probe. J Neurosci Methods 90:129–142

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from “Fonds zur Förderung der Wissenschaftlichen Forschung in Österreich” (Project 19335-N17), Ente Cassa di Risparmio di Firenze (Firenze, Italy), Università degli Studi di Firenze, Science Foundation Ireland, ERAB: The European Foundation for Alcohol Research (Brussels, Belgium), and also to the EU COST action D34 supporting our international cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Della Corte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freinbichler, W., Colivicchi, M.A., Stefanini, C. et al. Highly reactive oxygen species: detection, formation, and possible functions. Cell. Mol. Life Sci. 68, 2067–2079 (2011). https://doi.org/10.1007/s00018-011-0682-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0682-x

Keywords

Navigation