Skip to main content
Log in

Visual perception and memory systems: from cortex to medial temporal lobe

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Visual perception and memory are the most important components of vision processing in the brain. It was thought that the perceptual aspect of a visual stimulus occurs in visual cortical areas and that this serves as the substrate for the formation of visual memory in a distinct part of the brain called the medial temporal lobe. However, current evidence indicates that there is no functional separation of areas. Entire visual cortical pathways and connecting medial temporal lobe are important for both perception and visual memory. Though some aspects of this view are debated, evidence from both sides will be explored here. In this review, we will discuss the anatomical and functional architecture of the entire system and the implications of these structures in visual perception and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rodieck R (1998) The first steps in seeing. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  2. Dacey DM (2004) Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways. In: Gazzaniga MS (ed) The cognitive neurosciences. The MIT Press, Cambridge, pp 281–301

    Google Scholar 

  3. Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10(5):360–372

    PubMed  CAS  Google Scholar 

  4. Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153

    PubMed  CAS  Google Scholar 

  5. Dacey DM (2000) Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 23:743–775

    PubMed  CAS  Google Scholar 

  6. Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335(6188):311–317

    PubMed  CAS  Google Scholar 

  7. Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240(4853):740–749

    PubMed  CAS  Google Scholar 

  8. Felleman D, Van Essen D (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    PubMed  CAS  Google Scholar 

  9. Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402

    PubMed  CAS  Google Scholar 

  10. Ungerleider L, Mishkin M (1982) Two cortical visual systems. Analysis of visual behavior. The MIT Press, Cambridge

    Google Scholar 

  11. Federer F, Ichida JM, Jeffs J, Schiessl I, McLoughlin N, Angelucci A (2009) Four projection streams from primate V1 to the cytochrome oxidase stripes of V2. J Neurosci 29(49):15455–15471

    PubMed  CAS  Google Scholar 

  12. Van Essen DC, Gallant JL (1994) Neural mechanisms of form and motion processing in the primate visual system. Neuron 13(1):1–10

    PubMed  Google Scholar 

  13. Andersen RA, Asanuma C, Essick G, Siegel RM (1990) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296(1):65–113

    PubMed  CAS  Google Scholar 

  14. Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299(4):421–445

    PubMed  CAS  Google Scholar 

  15. Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296(3):462–495

    PubMed  CAS  Google Scholar 

  16. Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428(1):112–137

    PubMed  CAS  Google Scholar 

  17. Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586

    PubMed  CAS  Google Scholar 

  18. Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area TEO in macaque monkeys. J Comp Neurol 334(1):125–150

    PubMed  CAS  Google Scholar 

  19. Nakamura H, Gattass R, Desimone R, Ungerleider LG (1993) The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J Neurosci 13(9):3681–3691

    PubMed  CAS  Google Scholar 

  20. Ungerleider LG, Galkin TW, Desimone R, Gattass R (2008) Cortical connections of area V4 in the macaque. Cereb Cortex 18(3):477–499

    PubMed  Google Scholar 

  21. Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci USA 93(24):13494–13499

    PubMed  CAS  Google Scholar 

  22. Saleem KS, Suzuki W, Tanaka K, Hashikawa T (2000) Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J Neurosci 20(13):5083–5101

    PubMed  CAS  Google Scholar 

  23. Janssen P, Vogels R, Orban GA (2000) Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. Science 288(5473):2054–2056

    PubMed  CAS  Google Scholar 

  24. Luppino G, Hamed SB, Gamberini M, Matelli M, Galletti C (2005) Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: a cytoarchitectonic study. Eur J Neurosci 21(11):3056–3076

    PubMed  Google Scholar 

  25. Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16(10):1389–1417

    PubMed  Google Scholar 

  26. Borra E, Belmalih A, Calzavara R, Gerbella M, Murata A, Rozzi S, Luppino G (2008) Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb Cortex 18(5):1094–1111

    PubMed  Google Scholar 

  27. Galletti C, Gamberini M, Kutz DF, Baldinotti I, Fattori P (2005) The relationship between V6 and PO in macaque extrastriate cortex. Eur J Neurosci 21(4):959–970

    PubMed  Google Scholar 

  28. Latto R (1986) The role of inferior parietal cortex and the frontal eye-fields in visuospatial discriminations in the macaque monkey. Behav Brain Res 22(1):41–52

    PubMed  CAS  Google Scholar 

  29. Newsome WT, Pare EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8(6):2201–2211

    PubMed  CAS  Google Scholar 

  30. Orban GA, Saunders RC, Vandenbussche E (1995) Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey. Eur J Neurosci 7(11):2261–2276

    PubMed  CAS  Google Scholar 

  31. Pasternak T, Merigan WH (1994) Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb Cortex 4(3):247–259

    PubMed  CAS  Google Scholar 

  32. Quintana J, Fuster JM (1993) Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration. Cereb Cortex 3(2):122–132

    PubMed  CAS  Google Scholar 

  33. De Weerd P, Peralta MR 3rd, Desimone R, Ungerleider LG (1999) Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nat Neurosci 2(8):753–758

    PubMed  Google Scholar 

  34. Merigan WH (1996) Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques. Vis Neurosci 13(1):51–60

    PubMed  CAS  Google Scholar 

  35. Vogels R, Saunders RC, Orban GA (1997) Effects of inferior temporal lesions on two types of orientation discrimination in the macaque monkey. Eur J Neurosci 9(2):229–245

    PubMed  CAS  Google Scholar 

  36. Denys K, Vanduffel W, Fize D, Nelissen K, Peuskens H, Van Essen D, Orban GA (2004) The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. J Neurosci 24(10):2551–2565

    PubMed  Google Scholar 

  37. Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44(13):2647–2667

    PubMed  Google Scholar 

  38. Goodale MA, Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14(2):203–211

    PubMed  CAS  Google Scholar 

  39. Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16(23):7733–7741

    PubMed  CAS  Google Scholar 

  40. Ponce CR, Lomber SG, Born RT (2008) Integrating motion and depth via parallel pathways. Nat Neurosci 11(2):216–223

    PubMed  CAS  Google Scholar 

  41. Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264(3):356–395

    PubMed  CAS  Google Scholar 

  42. Mohedano-Moriano A, Pro-Sistiaga P, Arroyo-Jimenez MM, Artacho-Perula E, Insausti AM, Marcos P, Cebada-Sanchez S, Martinez-Ruiz J, Munoz M, Blaizot X, Martinez-Marcos A, Amaral DG, Insausti R (2007) Topographical and laminar distribution of cortical input to the monkey entorhinal cortex. J Anat 211(2):250–260

    PubMed  CAS  Google Scholar 

  43. Carmichael ST, Price JL (1995) Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 363(4):642–664

    PubMed  CAS  Google Scholar 

  44. Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228(1):105–116

    PubMed  CAS  Google Scholar 

  45. Ungerleider LG, Gaffan D, Pelak VS (1989) Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Exp Brain Res 76(3):473–484

    PubMed  CAS  Google Scholar 

  46. Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4(5):470–483

    PubMed  CAS  Google Scholar 

  47. Barbas H, Mesulam MM (1985) Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience 15(3):619–637

    PubMed  CAS  Google Scholar 

  48. Morris R, Pandya DN, Petrides M (1999) Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J Comp Neurol 407(2):183–192

    PubMed  CAS  Google Scholar 

  49. Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286(3):353–375

    PubMed  CAS  Google Scholar 

  50. Barbas H (1988) Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276(3):313–342

    PubMed  CAS  Google Scholar 

  51. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    PubMed  CAS  Google Scholar 

  52. Peterhans E, von der Heydt R (1991) Subjective contours–bridging the gap between psychophysics and physiology. Trends Neurosci 14(3):112–119

    PubMed  CAS  Google Scholar 

  53. Gallant JL, Braun J, Van Essen DC (1993) Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259(5091):100–103

    PubMed  CAS  Google Scholar 

  54. Schein SJ, Desimone R (1990) Spectral properties of V4 neurons in the macaque. J Neurosci 10(10):3369–3389

    PubMed  CAS  Google Scholar 

  55. Booth MC, Rolls ET (1998) View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb Cortex 8(6):510–523

    PubMed  CAS  Google Scholar 

  56. Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4(8):2051–2062

    PubMed  CAS  Google Scholar 

  57. Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360(6402):343–346

    PubMed  CAS  Google Scholar 

  58. Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys. Curr Biol 5(5):552–563

    PubMed  CAS  Google Scholar 

  59. Sigala N, Logothetis NK (2002) Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415(6869):318–320

    PubMed  CAS  Google Scholar 

  60. Tanaka K (1993) Neuronal mechanisms of object recognition. Science 262(5134):685–688

    PubMed  CAS  Google Scholar 

  61. Orban GA (2008) Higher order visual processing in macaque extrastriate cortex. Physiol Rev 88(1):59–89

    PubMed  Google Scholar 

  62. Conway BR, Moeller S, Tsao DY (2007) Specialized color modules in macaque extrastriate cortex. Neuron 56(3):560–573

    PubMed  CAS  Google Scholar 

  63. Pasupathy A, Connor CE (1999) Responses to contour features in macaque area V4. J Neurophysiol 82(5):2490–2502

    PubMed  CAS  Google Scholar 

  64. Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52(6):1106–1130

    PubMed  CAS  Google Scholar 

  65. DeAngelis GC, Cumming BG, Newsome WT (1998) Cortical area MT and the perception of stereoscopic depth. Nature 394(6694):677–680

    PubMed  CAS  Google Scholar 

  66. Lappe M, Bremmer F, Pekel M, Thiele A, Hoffmann KP (1996) Optic flow processing in monkey STS: a theoretical and experimental approach. J Neurosci 16(19):6265–6285

    PubMed  CAS  Google Scholar 

  67. Siegel RM, Read HL (1997) Analysis of optic flow in the monkey parietal area 7a. Cereb Cortex 7(4):327–346

    PubMed  CAS  Google Scholar 

  68. Desimone R, Schein SJ, Moran J, Ungerleider LG (1985) Contour, color and shape analysis beyond the striate cortex. Vision Res 25(3):441–452

    PubMed  CAS  Google Scholar 

  69. Komatsu H, Ideura Y (1993) Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. J Neurophysiol 70(2):677–694

    PubMed  CAS  Google Scholar 

  70. Konen CS, Kastner S (2008) Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci 11(2):224–231

    PubMed  CAS  Google Scholar 

  71. Baeck A, Op de Beeck HP (2010) Transfer of object learning across distinct visual learning paradigms. J Vis 10(2):17.11–17.19. doi:10.1167/10.2.17

  72. McKee RD, Squire LR (1993) On the development of declarative memory. J Exp Psychol Learn Mem Cogn 19(2):397–404

    PubMed  CAS  Google Scholar 

  73. Bussey TJ, Saksida LM (2007) Memory, perception, and the ventral visual–perirhinal–hippocampal stream: thinking outside of the boxes. Hippocampus 17(9):898–908. doi:10.1002/hipo.20320

    PubMed  CAS  Google Scholar 

  74. Fahle M (2004) Perceptual learning: a case for early selection. J Vis 4(10):879–890

    PubMed  Google Scholar 

  75. Crist RE, Li W, Gilbert CD (2001) Learning to see: experience and attention in primary visual cortex. Nat Neurosci 4(5):519–525

    PubMed  CAS  Google Scholar 

  76. Schoups AA, Vogels R, Orban GA (1995) Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J Physiol 483(Pt 3):797–810

    PubMed  CAS  Google Scholar 

  77. Schiltz C, Bodart JM, Dubois S, Dejardin S, Michel C, Roucoux A, Crommelinck M, Orban GA (1999) Neuronal mechanisms of perceptual learning: changes in human brain activity with training in orientation discrimination. Neuroimage 9(1):46–62

    PubMed  CAS  Google Scholar 

  78. Furmanski CS, Schluppeck D, Engel SA (2004) Learning strengthens the response of primary visual cortex to simple patterns. Curr Biol 14(7):573–578

    PubMed  CAS  Google Scholar 

  79. Schwartz S, Maquet P, Frith C (2002) Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci USA 99(26):17137–17142

    PubMed  CAS  Google Scholar 

  80. Ghose GM, Yang T, Maunsell JH (2002) Physiological correlates of perceptual learning in monkey V1 and V2. J Neurophysiol 87(4):1867–1888

    PubMed  Google Scholar 

  81. Schoups A, Vogels R, Qian N, Orban G (2001) Practising orientation identification improves orientation coding in V1 neurons. Nature 412(6846):549–553

    PubMed  CAS  Google Scholar 

  82. Kourtzi Z, Betts LR, Sarkheil P, Welchman AE (2005) Distributed neural plasticity for shape learning in the human visual cortex. PLoS Biol 3(7):e204

    PubMed  Google Scholar 

  83. Sigman M, Pan H, Yang Y, Stern E, Silbersweig D, Gilbert CD (2005) Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron 46(5):823–835

    PubMed  CAS  Google Scholar 

  84. Ahissar M, Hochstein S (2004) The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci 8(10):457–464

    PubMed  Google Scholar 

  85. Yang T, Maunsell JH (2004) The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci 24(7):1617–1626

    PubMed  Google Scholar 

  86. Gilbert CD, Sigman M, Crist RE (2001) The neural basis of perceptual learning. Neuron 31(5):681–697

    PubMed  CAS  Google Scholar 

  87. Li W, Piech V, Gilbert CD (2004) Perceptual learning and top-down influences in primary visual cortex. Nat Neurosci 7(6):651–657

    PubMed  CAS  Google Scholar 

  88. Sagi D, Tanne D (1994) Perceptual learning: learning to see. Curr Opin Neurobiol 4(2):195–199

    PubMed  CAS  Google Scholar 

  89. Sigman M, Gilbert CD (2000) Learning to find a shape. Nat Neurosci 3(3):264–269

    PubMed  CAS  Google Scholar 

  90. Buckley MJ, Gaffan D (2006) Perirhinal cortical contributions to object perception. Trends Cogn Sci 10(3):100–107

    PubMed  Google Scholar 

  91. Murray EA, Bussey TJ, Saksida LM (2007) Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu Rev Neurosci 30:99–122

    PubMed  CAS  Google Scholar 

  92. Lee AC, Bussey TJ, Murray EA, Saksida LM, Epstein RA, Kapur N, Hodges JR, Graham KS (2005) Perceptual deficits in amnesia: challenging the medial temporal lobe ‘mnemonic’ view. Neuropsychologia 43(1):1–11

    PubMed  Google Scholar 

  93. Lee AC, Rudebeck SR (2010) Human medial temporal lobe damage can disrupt the perception of single objects. J Neurosci 30(19):6588–6594

    PubMed  CAS  Google Scholar 

  94. Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    PubMed  CAS  Google Scholar 

  95. Suzuki WA, Baxter MG (2009) Memory, perception, and the medial temporal lobe: a synthesis of opinions. Neuron 61(5):678–679

    PubMed  CAS  Google Scholar 

  96. Baxter MG (2009) Involvement of medial temporal lobe structures in memory and perception. Neuron 61(5):667–677

    PubMed  CAS  Google Scholar 

  97. Suzuki WA (2009) Perception and the medial temporal lobe: evaluating the current evidence. Neuron 61(5):657–666

    PubMed  CAS  Google Scholar 

  98. Buckley MJ, Booth MC, Rolls ET, Gaffan D (2001) Selective perceptual impairments after perirhinal cortex ablation. J Neurosci 21(24):9824–9836

    PubMed  CAS  Google Scholar 

  99. Bussey TJ, Saksida LM, Murray EA (2002) Perirhinal cortex resolves feature ambiguity in complex visual discriminations. Eur J Neurosci 15(2):365–374

    PubMed  Google Scholar 

  100. Bussey TJ, Saksida LM, Murray EA (2003) Impairments in visual discrimination after perirhinal cortex lesions: testing ‘declarative’ vs. ‘perceptual-mnemonic’ views of perirhinal cortex function. Eur J Neurosci 17(3):649–660

    PubMed  Google Scholar 

  101. Barense MD, Bussey TJ, Lee AC, Rogers TT, Davies RR, Saksida LM, Murray EA, Graham KS (2005) Functional specialization in the human medial temporal lobe. J Neurosci 25(44):10239–10246

    PubMed  CAS  Google Scholar 

  102. Barense MD, Gaffan D, Graham KS (2007) The human medial temporal lobe processes online representations of complex objects. Neuropsychologia 45(13):2963–2974

    PubMed  Google Scholar 

  103. Lee AC, Buckley MJ, Pegman SJ, Spiers H, Scahill VL, Gaffan D, Bussey TJ, Davies RR, Kapur N, Hodges JR, Graham KS (2005) Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus 15(6):782–797

    PubMed  Google Scholar 

  104. Lee AC, Buckley MJ, Gaffan D, Emery T, Hodges JR, Graham KS (2006) Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: a double dissociation in dementia. J Neurosci 26(19):5198–5203

    PubMed  CAS  Google Scholar 

  105. Lee AC, Levi N, Davies RR, Hodges JR, Graham KS (2007) Differing profiles of face and scene discrimination deficits in semantic dementia and Alzheimer’s disease. Neuropsychologia 45(9):2135–2146

    PubMed  Google Scholar 

  106. Bartko SJ, Winters BD, Cowell RA, Saksida LM, Bussey TJ (2007) Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks. Learn Mem 14(12):821–832

    PubMed  Google Scholar 

  107. Bartko SJ, Winters BD, Cowell RA, Saksida LM, Bussey TJ (2007) Perceptual functions of perirhinal cortex in rats: zero-delay object recognition and simultaneous oddity discriminations. J Neurosci 27(10):2548–2559

    PubMed  CAS  Google Scholar 

  108. Buffalo B, Gaffan D, Murray EA (1994) A primacy effect in monkeys when list position is relevant. Q J Exp Psychol B 47(4):353–369

    PubMed  CAS  Google Scholar 

  109. Murray EA, Gaffan D (1994) Removal of the amygdala plus subjacent cortex disrupts the retention of both intramodal and crossmodal associative memories in monkeys. Behav Neurosci 108(3):494–500

    PubMed  CAS  Google Scholar 

  110. Buffalo EA, Reber PJ, Squire LR (1998) The human perirhinal cortex and recognition memory. Hippocampus 8(4):330–339

    PubMed  CAS  Google Scholar 

  111. Buffalo EA, Ramus SJ, Clark RE, Teng E, Squire LR, Zola SM (1999) Dissociation between the effects of damage to perirhinal cortex and area TE. Learn Mem 6(6):572–599

    PubMed  CAS  Google Scholar 

  112. Stark CE, Squire LR (2000) Intact visual perceptual discrimination in humans in the absence of perirhinal cortex. Learn Mem 7(5):273–278

    PubMed  CAS  Google Scholar 

  113. Levy DA, Shrager Y, Squire LR (2005) Intact visual discrimination of complex and feature-ambiguous stimuli in the absence of perirhinal cortex. Learn Mem 12(1):61–66

    PubMed  Google Scholar 

  114. Shrager Y, Gold JJ, Hopkins RO, Squire LR (2006) Intact visual perception in memory-impaired patients with medial temporal lobe lesions. J Neurosci 26(8):2235–2240

    PubMed  CAS  Google Scholar 

  115. Gaffan D (1994) Dissociated effects of perirhinal cortex ablation, fornix transection and amygdalectomy: evidence for multiple memory systems in the primate temporal lobe. Exp Brain Res 99(3):411–422

    PubMed  CAS  Google Scholar 

  116. Ranganath C, D’Esposito M (2001) Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31(5):865–873

    PubMed  CAS  Google Scholar 

  117. Olson IR, Moore KS, Stark M, Chatterjee A (2006) Visual working memory is impaired when the medial temporal lobe is damaged. J Cogn Neurosci 18(7):1087–1097

    PubMed  Google Scholar 

  118. Hartley T, Bird CM, Chan D, Cipolotti L, Husain M, Vargha-Khadem F, Burgess N (2007) The hippocampus is required for short-term topographical memory in humans. Hippocampus 17(1):34–48

    PubMed  Google Scholar 

  119. Schacter DL, Cooper LA, Delaney SM (1990) Implicit memory for unfamiliar objects depends on access to structural descriptions. J Exp Psychol Gen 119(1):5–24

    PubMed  CAS  Google Scholar 

  120. Devlin JT, Price CJ (2007) Perirhinal contributions to human visual perception. Curr Biol 17(17):1484–1488

    PubMed  CAS  Google Scholar 

  121. Barense MD, Henson RN, Lee AC, Graham KS (2010) Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: effects of viewpoint. Hippocampus 20(3):389–401

    PubMed  Google Scholar 

  122. Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31(5):673–704

    PubMed  CAS  Google Scholar 

  123. Squire LR, Wixted JT, Clark RE (2007) Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci 8(11):872–883

    PubMed  CAS  Google Scholar 

  124. Suzuki WA, Amaral DG (1994) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14(3 Pt 2):1856–1877

    PubMed  CAS  Google Scholar 

  125. Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152

    PubMed  CAS  Google Scholar 

  126. Holscher C, Rolls ET, Xiang J (2003) Perirhinal cortex neuronal activity related to long-term familiarity memory in the macaque. Eur J Neurosci 18(7):2037–2046

    PubMed  Google Scholar 

  127. Rolls ET, Franco L, Stringer SM (2005) The perirhinal cortex and long-term familiarity memory. Q J Exp Psychol B 58(3–4):234–245

    PubMed  CAS  Google Scholar 

  128. Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA (1989) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9(12):4355–4370

    PubMed  CAS  Google Scholar 

  129. Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13(12):5418–5432

    PubMed  CAS  Google Scholar 

  130. Lopez-Aranda MF, Lopez-Tellez JF, Navarro-Lobato I, Masmudi-Martin M, Gutierrez A, Khan ZU (2009) Role of layer 6 of V2 visual cortex in object-recognition memory. Science 325(5936):87–89

    PubMed  CAS  Google Scholar 

  131. Suzuki WA, Amaral DG (1994) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350(4):497–533

    PubMed  CAS  Google Scholar 

  132. Saleem KS, Tanaka K (1996) Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey. J Neurosci 16(15):4757–4775

    PubMed  CAS  Google Scholar 

  133. Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    PubMed  CAS  Google Scholar 

  134. Zola-Morgan SM, Squire LR (1990) The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250(4978):288–290

    PubMed  CAS  Google Scholar 

  135. Murray EA, Bussey TJ (1999) Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn Sci 3(4):142–151

    PubMed  Google Scholar 

  136. Mishkin M (1982) A memory system in the monkey. Philos Trans R Soc Lond B Biol Sci 298(1089):83–95

    PubMed  CAS  Google Scholar 

  137. Miyashita Y, Hayashi T (2000) Neural representation of visual objects: encoding and top-down activation. Curr Opin Neurobiol 10(2):187–194

    PubMed  CAS  Google Scholar 

  138. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253(5026):1380–1386

    PubMed  CAS  Google Scholar 

  139. Miyashita Y (1993) Inferior temporal cortex: where visual perception meets memory. Annu Rev Neurosci 16:245–263

    PubMed  CAS  Google Scholar 

  140. Miyashita Y (2000) Visual associative long-term memory: encoding and retrieval in inferotemporal cortex of the primate. In: Gazzaniga MS (ed) The new cognitive neurosciences. The MIT Press, Cambridge, pp 379–392

    Google Scholar 

  141. Mishkin M, Suzuki WA, Gadian DG, Vargha-Khadem F (1997) Hierarchical organization of cognitive memory. Philos Trans R Soc Lond B Biol Sci 352(1360):1461–1467

    PubMed  CAS  Google Scholar 

  142. Rolls ET (2000) Memory systems in the brain. Annu Rev Psychol 51:599–630

    PubMed  CAS  Google Scholar 

  143. Allred SR, Jagadeesh B (2007) Quantitative comparison between neural response in macaque inferotemporal cortex and behavioral discrimination of photographic images. J Neurophysiol 98(3):1263–1277

    PubMed  Google Scholar 

  144. Messinger A, Squire LR, Zola SM, Albright TD (2001) Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proc Natl Acad Sci USA 98(21):12239–12244

    PubMed  CAS  Google Scholar 

  145. Naya Y, Yoshida M, Miyashita Y (2003) Forward processing of long-term associative memory in monkey inferotemporal cortex. J Neurosci 23(7):2861–2871

    PubMed  CAS  Google Scholar 

  146. Nakahara K, Ohbayashi M, Tomita H, Miyashita Y (1998) The neuronal basis of visual memory and imagery in the primate: a neurophysiological approach. Adv Biophys 35:103–119

    PubMed  CAS  Google Scholar 

  147. Allred S, Liu Y, Jagadeesh B (2005) Selectivity of inferior temporal neurons for realistic pictures predicted by algorithms for image database navigation. J Neurophysiol 94(6):4068–4081

    PubMed  Google Scholar 

  148. Horel JA, Pytko-Joiner DE, Voytko ML, Salsbury K (1987) The performance of visual tasks while segments of the inferotemporal cortex are suppressed by cold. Behav Brain Res 23(1):29–42

    PubMed  CAS  Google Scholar 

  149. Martin-Elkins CL, George P, Horel JA (1989) Retention deficits produced in monkeys with reversible cold lesions in the prestriate cortex. Behav Brain Res 32(3):219–230

    PubMed  CAS  Google Scholar 

  150. Gaffan D, Murray EA (1992) Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-h intertrial intervals and fail at matching to sample despite double sample presentations. Behav Neurosci 106(1):30–38

    PubMed  CAS  Google Scholar 

  151. Eacott MJ, Gaffan D, Murray EA (1994) Preserved recognition memory for small sets, and impaired stimulus identification for large sets, following rhinal cortex ablations in monkeys. Eur J Neurosci 6(9):1466–1478

    PubMed  CAS  Google Scholar 

  152. Deacon TW, Eichenbaum H, Rosenberg P, Eckmann KW (1983) Afferent connections of the perirhinal cortex in the rat. J Comp Neurol 220(2):168–190

    PubMed  CAS  Google Scholar 

  153. Miller MW, Vogt BA (1984) Direct connections of rat visual cortex with sensory, motor, and association cortices. J Comp Neurol 226(2):184–202

    PubMed  CAS  Google Scholar 

  154. Coogan TA, Burkhalter A (1990) Conserved patterns of cortico-cortical connections define areal hierarchy in rat visual cortex. Exp Brain Res 80(1):49–53

    PubMed  CAS  Google Scholar 

  155. Sanderson KJ, Dreher B, Gayer N (1991) Prosencephalic connections of striate and extrastriate areas of rat visual cortex. Exp Brain Res 85(2):324–334

    PubMed  CAS  Google Scholar 

  156. Vaudano E, Legg CR, Glickstein M (1991) Afferent and efferent connections of temporal association cortex in the rat: a horseradish peroxidase study. Eur J Neurosci 3(4):317–330

    PubMed  Google Scholar 

  157. Kesner RP, Bolland BL, Dakis M (1993) Memory for spatial locations, motor responses, and objects: triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex. Exp Brain Res 93(3):462–470

    PubMed  CAS  Google Scholar 

  158. Kolb B, Buhrmann K, McDonald R, Sutherland RJ (1994) Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. Cereb Cortex 4(6):664–680

    PubMed  CAS  Google Scholar 

  159. Mumby DG, Pinel JP (1994) Rhinal cortex lesions and object recognition in rats. Behav Neurosci 108(1):11–18

    PubMed  CAS  Google Scholar 

  160. Davis BK, McDaniel WF (1993) Visual memory and visual spatial functions in the rat following parietal and temporal cortex injuries. Physiol Behav 53(1):145–151

    PubMed  CAS  Google Scholar 

  161. Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ (2004) Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci 24(26):5901–5908

    PubMed  CAS  Google Scholar 

  162. Danckert SL, Gati JS, Menon RS, Kohler S (2007) Perirhinal and hippocampal contributions to visual recognition memory can be distinguished from those of occipito-temporal structures based on conscious awareness of prior occurrence. Hippocampus 17(11):1081–1092

    PubMed  CAS  Google Scholar 

  163. Taylor KJ, Henson RN, Graham KS (2007) Recognition memory for faces and scenes in amnesia: dissociable roles of medial temporal lobe structures. Neuropsychologia 45(11):2428–2438

    PubMed  Google Scholar 

  164. Winters BD, Bussey TJ (2005) Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25(1):52–61

    PubMed  CAS  Google Scholar 

  165. Tang Y, Mishkin M, Aigner TG (1997) Effects of muscarinic blockade in perirhinal cortex during visual recognition. Proc Natl Acad Sci USA 94(23):12667–12669

    PubMed  CAS  Google Scholar 

  166. Barker GR, Bashir ZI, Brown MW, Warburton EC (2006) A temporally distinct role for group I and group II metabotropic glutamate receptors in object recognition memory. Learn Mem 13(2):178–186

    PubMed  CAS  Google Scholar 

  167. Winters BD, Bussey TJ (2005) Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25(17):4243–4251

    PubMed  CAS  Google Scholar 

  168. Turchi J, Saunders RC, Mishkin M (2005) Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys. Proc Natl Acad Sci USA 102(6):2158–2161

    PubMed  CAS  Google Scholar 

  169. Winters BD, Saksida LM, Bussey TJ (2006) Paradoxical facilitation of object recognition memory after infusion of scopolamine into perirhinal cortex: implications for cholinergic system function. J Neurosci 26(37):9520–9529

    PubMed  CAS  Google Scholar 

  170. Winters BD, Bartko SJ, Saksida LM, Bussey TJ (2010) Muscimol, AP5, or scopolamine infused into perirhinal cortex impairs two-choice visual discrimination learning in rats. Neurobiol Learn Mem 93(2):221–228

    PubMed  CAS  Google Scholar 

  171. Ennaceur A, Neave N, Aggleton JP (1996) Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav Brain Res 80(1–2):9–25

    PubMed  CAS  Google Scholar 

  172. Bussey TJ, Muir JL, Aggleton JP (1999) Functionally dissociating aspects of event memory: the effects of combined perirhinal and postrhinal cortex lesions on object and place memory in the rat. J Neurosci 19(1):495–502

    PubMed  CAS  Google Scholar 

  173. Bussey TJ, Duck J, Muir JL, Aggleton JP (2000) Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav Brain Res 111(1–2):187–202

    PubMed  CAS  Google Scholar 

  174. Leonard BW, Amaral DG, Squire LR, Zola-Morgan S (1995) Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J Neurosci 15(8):5637–5659

    PubMed  CAS  Google Scholar 

  175. Aggleton JP, Albasser MM, Aggleton DJ, Poirier GL, Pearce JM (2010) Lesions of the rat perirhinal cortex spare the acquisition of a complex configural visual discrimination yet impair object recognition. Behav Neurosci 124(1):55–68

    PubMed  Google Scholar 

  176. McTighe SM, Cowell RA, Winters BD, Bussey TJ, Saksida LM (2010) Paradoxical false memory for objects after brain damage. Science 330(6009):1408–1410. doi:10.1126/science.1194780

    PubMed  CAS  Google Scholar 

  177. Burke SN, Wallace JL, Nematollahi S, Uprety AR, Barnes CA (2010) Pattern separation deficits may contribute to age-associated recognition impairments. Behav Neurosci 124(5):559–573. doi:10.1037/a0020893

    PubMed  Google Scholar 

  178. Diana RA, Yonelinas AP, Ranganath C (2007) Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci 11(9):379–386. doi:10.1016/j.tics.2007.08.001

    PubMed  Google Scholar 

  179. Davachi L (2006) Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16(6):693–700. doi:10.1016/j.conb.2006.10.012

    PubMed  CAS  Google Scholar 

  180. Wan H, Aggleton JP, Brown MW (1999) Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 19(3):1142–1148

    PubMed  CAS  Google Scholar 

  181. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford

    Google Scholar 

  182. Eichenbaum H, Otto T, Cohen NJ (1992) The hippocampus—what does it do? Behav Neural Biol 57(1):2–36

    PubMed  CAS  Google Scholar 

  183. Steckler T, Drinkenburg WH, Sahgal A, Aggleton JP (1998) Recognition memory in rats—II. Neuroanatomical substrates. Prog Neurobiol 54(3):313–332

    PubMed  CAS  Google Scholar 

  184. Mumby DG (2001) Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav Brain Res 127(1–2):159–181

    PubMed  CAS  Google Scholar 

  185. Parkinson JK, Murray EA, Mishkin M (1988) A selective mnemonic role for the hippocampus in monkeys: memory for the location of objects. J Neurosci 8(11):4159–4167

    PubMed  CAS  Google Scholar 

  186. Murray EA, Mishkin M (1998) Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J Neurosci 18(16):6568–6582

    PubMed  CAS  Google Scholar 

  187. Maguire EA, Frackowiak RS, Frith CD (1997) Recalling routes around london: activation of the right hippocampus in taxi drivers. J Neurosci 17(18):7103–7110

    PubMed  CAS  Google Scholar 

  188. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601

    PubMed  CAS  Google Scholar 

  189. Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A, Dale AM, Rosen BR, Buckner RL (1998) Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281(5380):1188–1191

    PubMed  CAS  Google Scholar 

  190. Fernandez G, Effern A, Grunwald T, Pezer N, Lehnertz K, Dumpelmann M, Van Roost D, Elger CE (1999) Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science 285(5433):1582–1585

    PubMed  CAS  Google Scholar 

  191. Strange BA, Otten LJ, Josephs O, Rugg MD, Dolan RJ (2002) Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. J Neurosci 22(2):523–528

    PubMed  CAS  Google Scholar 

  192. Moser MB, Moser EI (1998) Distributed encoding and retrieval of spatial memory in the hippocampus. J Neurosci 18(18):7535–7542

    PubMed  CAS  Google Scholar 

  193. Colombo M, Fernandez T, Nakamura K, Gross CG (1998) Functional differentiation along the anterior-posterior axis of the hippocampus in monkeys. J Neurophysiol 80(2):1002–1005

    PubMed  CAS  Google Scholar 

  194. Jung MW, Wiener SI, McNaughton BL (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14(12):7347–7356

    PubMed  CAS  Google Scholar 

  195. Maguire EA, Valentine ER, Wilding JM, Kapur N (2003) Routes to remembering: the brains behind superior memory. Nat Neurosci 6(1):90–95. doi:10.1038/nn988

    PubMed  CAS  Google Scholar 

  196. Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser MB (2008) Finite scale of spatial representation in the hippocampus. Science 321(5885):140–143. doi:10.1126/science.1157086

    PubMed  CAS  Google Scholar 

  197. Murray EA, Baxter MG, Gaffan D (1998) Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals. Behav Neurosci 112(6):1291–1303

    PubMed  CAS  Google Scholar 

  198. Eacott MJ, Norman G (2004) Integrated memory for object, place, and context in rats: a possible model of episodic-like memory? J Neurosci 24(8):1948–1953

    PubMed  CAS  Google Scholar 

  199. Langston RF, Wood ER (2009) Associative recognition and the hippocampus: differential effects of hippocampal lesions on object–place, object–context and object–place–context memory. Hippocampus 20:1139–1153

    Google Scholar 

  200. Malkova L, Mishkin M (2003) One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J Neurosci 23(5):1956–1965. pii:23/5/1956

    Google Scholar 

  201. Belcher AM, Harrington RA, Malkova L, Mishkin M (2006) Effects of hippocampal lesions on the monkey’s ability to learn large sets of object–place associations. Hippocampus 16(4):361–367. doi:10.1002/hipo.20147

    PubMed  Google Scholar 

  202. Baxter MG, Murray EA (2001) Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching-to-sample deficits in monkeys. Hippocampus 11(1):61–71. doi:10.1002/1098-1063(2001)11:1<61:AID-HIPO1021>3.0.CO;2-Z

    PubMed  CAS  Google Scholar 

  203. Baxter MG (2010) I’ve seen it all before”: explaining age-related impairments in object recognition. Theoretical comment on Burke et al. (2010). Behav Neurosci 124(5):706–709. doi:10.1037/a0021029

    PubMed  Google Scholar 

  204. Pihlajamaki M, Tanila H, Kononen M, Hanninen T, Hamalainen A, Soininen H, Aronen HJ (2004) Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19(7):1939–1949

    PubMed  Google Scholar 

  205. Poppenk J, McIntosh AR, Craik FI, Moscovitch M (2010) Past experience modulates the neural mechanisms of episodic memory formation. J Neurosci 30(13):4707–4716

    PubMed  CAS  Google Scholar 

  206. Fortin NJ, Wright SP, Eichenbaum H (2004) Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431(7005):188–191

    PubMed  CAS  Google Scholar 

  207. Fuster JM (1990) In: Uylings HBM, Eden CGP, Bruin JPCD, Corner MA, Feenstra MGP (eds) Progress in brain research. Elsevier, Amsterdam, pp 313–323

  208. Goldman-Rakic PS (1990) In: Uylings HBM, Eden CGP, Bruin JPCD, Corner MA, Feenstra MGP (eds) Progress in brain research. Elsevier, Amsterdam, pp 325–336

  209. Bachevalier J, Mishkin M (1986) Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res 20(3):249–261

    PubMed  CAS  Google Scholar 

  210. Browning PG, Easton A, Buckley MJ, Gaffan D (2005) The role of prefrontal cortex in object-in-place learning in monkeys. Eur J Neurosci 22(12):3281–3291. doi:10.1111/j.1460-9568.2005.04477.x

    PubMed  Google Scholar 

  211. Schacter DL, Slotnick SD (2004) The cognitive neuroscience of memory distortion. Neuron 44(1):149–160

    PubMed  CAS  Google Scholar 

  212. Farovik A, Dupont LM, Arce M, Eichenbaum H (2008) Medial prefrontal cortex supports recollection, but not familiarity, in the rat. J Neurosci 28(50):13428–13434. doi:10.1523/JNEUROSCI.3662-08.2008

    PubMed  CAS  Google Scholar 

  213. Devito LM, Eichenbaum H (2010) Distinct contributions of the hippocampus and medial prefrontal cortex to the “what-where-when” components of episodic-like memory in mice. Behav Brain Res 215:318–325

    PubMed  Google Scholar 

  214. Janowsky JS, Shimamura AP, Squire LR (1989) Source memory impairment in patients with frontal lobe lesions. Neuropsychologia 27(8):1043–1056

    PubMed  CAS  Google Scholar 

  215. Warburton EC, Brown MW (2010) Findings from animals concerning when interactions between perirhinal cortex, hippocampus and medial prefrontal cortex are necessary for recognition memory. Neuropsychologia 48(8):2262–2272

    PubMed  Google Scholar 

  216. Yonelinas AP (2001) Components of episodic memory: the contribution of recollection and familiarity. Philos Trans R Soc Lond B Biol Sci 356(1413):1363–1374

    PubMed  CAS  Google Scholar 

  217. Brown MW, Aggleton JP (2001) Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci 2(1):51–61

    PubMed  CAS  Google Scholar 

  218. Rugg MD, Yonelinas AP (2003) Human recognition memory: a cognitive neuroscience perspective. Trends Cogn Sci 7(7):313–319

    PubMed  Google Scholar 

  219. Bowles B, Crupi C, Mirsattari SM, Pigott SE, Parrent AG, Pruessner JC, Yonelinas AP, Kohler S (2007) Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus. Proc Natl Acad Sci USA 104(41):16382–16387. doi:10.1073/pnas.0705273104

    PubMed  CAS  Google Scholar 

  220. Wolk DA, Dunfee KL, Dickerson BC, Aizenstein HJ, Dekosky ST (2010) A medial temporal lobe division of labor: Insights from memory in aging and early Alzheimer disease. Hippocampus (in press)

  221. Yonelinas AP, Parks CM (2007) Receiver operating characteristics (ROCs) in recognition memory: a review. Psychol Bull 133(5):800–832

    PubMed  Google Scholar 

  222. Brown MW, Bashir ZI (2002) Evidence concerning how neurons of the perirhinal cortex may effect familiarity discrimination. Philos Trans R Soc Lond B Biol Sci 357(1424):1083–1095

    PubMed  CAS  Google Scholar 

  223. Brown MW, Xiang JZ (1998) Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog Neurobiol 55(2):149–189

    PubMed  CAS  Google Scholar 

  224. Brown MW, Wilson FA, Riches IP (1987) Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Res 409(1):158–162

    PubMed  CAS  Google Scholar 

  225. Fahy FL, Riches IP, Brown MW (1993) Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp Brain Res 96(3):457–472

    PubMed  CAS  Google Scholar 

  226. Riches IP, Wilson FA, Brown MW (1991) The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J Neurosci 11(6):1763–1779

    PubMed  CAS  Google Scholar 

  227. Xiang JZ, Brown MW (1998) Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37(4–5):657–676

    PubMed  CAS  Google Scholar 

  228. Zhu XO, Brown MW, Aggleton JP (1995) Neuronal signalling of information important to visual recognition memory in rat rhinal and neighbouring cortices. Eur J Neurosci 7(4):753–765

    PubMed  CAS  Google Scholar 

  229. Sauvage MM, Fortin NJ, Owens CB, Yonelinas AP, Eichenbaum H (2008) Recognition memory: opposite effects of hippocampal damage on recollection and familiarity. Nat Neurosci 11(1):16–18

    PubMed  CAS  Google Scholar 

  230. Parks CM, Yonelinas AP (2007) Moving beyond pure signal-detection models: comment on Wixted (2007). Psychol Rev 114(1):188–202 (discussion 203–189)

    PubMed  Google Scholar 

  231. Yonelinas AP, Kroll NE, Quamme JR, Lazzara MM, Sauve MJ, Widaman KF, Knight RT (2002) Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nat Neurosci 5(11):1236–1241

    PubMed  CAS  Google Scholar 

  232. Ranganath C, Yonelinas AP, Cohen MX, Dy CJ, Tom SM, D’Esposito M (2004) Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia 42(1):2–13

    PubMed  Google Scholar 

  233. Shrager Y, Kirwan CB, Squire LR (2008) Activity in both hippocampus and perirhinal cortex predicts the memory strength of subsequently remembered information. Neuron 59(4):547–553

    PubMed  CAS  Google Scholar 

  234. Wixted JT, Squire LR (2010) The role of the human hippocampus in familiarity-based and recollection-based recognition memory. Behav Brain Res 215(2):197–208

    PubMed  Google Scholar 

  235. Pascalis O, Hunkin NM, Holdstock JS, Isaac CL, Mayes AR (2004) Visual paired comparison performance is impaired in a patient with selective hippocampal lesions and relatively intact item recognition. Neuropsychologia 42(10):1293–1300

    PubMed  CAS  Google Scholar 

  236. Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11(4):170–175

    PubMed  CAS  Google Scholar 

  237. Alvarez P, Zola-Morgan S, Squire LR (1995) Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. J Neurosci 15(5 Pt 2):3796–3807

    PubMed  CAS  Google Scholar 

  238. Beason-Held LL, Rosene DL, Killiany RJ, Moss MB (1999) Hippocampal formation lesions produce memory impairment in the rhesus monkey. Hippocampus 9(5):562–574

    PubMed  CAS  Google Scholar 

  239. Nemanic S, Alvarado MC, Bachevalier J (2004) The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. J Neurosci 24(8):2013–2026

    PubMed  CAS  Google Scholar 

  240. Zola-Morgan S, Squire LR, Rempel NL, Clower RP, Amaral DG (1992) Enduring memory impairment in monkeys after ischemic damage to the hippocampus. J Neurosci 12(7):2582–2596

    PubMed  CAS  Google Scholar 

  241. Zola SM, Squire LR, Teng E, Stefanacci L, Buffalo EA, Clark RE (2000) Impaired recognition memory in monkeys after damage limited to the hippocampal region. J Neurosci 20(1):451–463

    PubMed  CAS  Google Scholar 

  242. Zola-Morgan S, Squire LR (1986) Memory impairment in monkeys following lesions limited to the hippocampus. Behav Neurosci 100(2):155–160

    PubMed  CAS  Google Scholar 

  243. Baker KB, Kim JJ (2002) Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learn Mem 9(2):58–65

    PubMed  Google Scholar 

  244. Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci USA 101(40):14515–14520

    PubMed  CAS  Google Scholar 

  245. Clark RE, Zola SM, Squire LR (2000) Impaired recognition memory in rats after damage to the hippocampus. J Neurosci 20(23):8853–8860

    PubMed  CAS  Google Scholar 

  246. Clark RE, West AN, Zola SM, Squire LR (2001) Rats with lesions of the hippocampus are impaired on the delayed nonmatching-to-sample task. Hippocampus 11(2):176–186

    PubMed  CAS  Google Scholar 

  247. de Lima MN, Luft T, Roesler R, Schroder N (2006) Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neurosci Lett 405(1–2):142–146

    PubMed  Google Scholar 

  248. Gaskin S, Tremblay A, Mumby DG (2003) Retrograde and anterograde object recognition in rats with hippocampal lesions. Hippocampus 13(8):962–969

    PubMed  Google Scholar 

  249. Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82(1):26–34

    PubMed  Google Scholar 

  250. Mistlberger RE, Mumby DG (1992) The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies. Behav Brain Res 47(2):159–168

    PubMed  CAS  Google Scholar 

  251. Prusky GT, Douglas RM, Nelson L, Shabanpoor A, Sutherland RJ (2004) Visual memory task for rats reveals an essential role for hippocampus and perirhinal cortex. Proc Natl Acad Sci USA 101(14):5064–5068

    PubMed  CAS  Google Scholar 

  252. Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ (2000) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3(3):238–244

    PubMed  CAS  Google Scholar 

  253. Rossato JI, Bevilaqua LR, Myskiw JC, Medina JH, Izquierdo I, Cammarota M (2007) On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem 14(1):36–46

    PubMed  Google Scholar 

  254. Jessberger S, Clark RE, Broadbent NJ, Clemenson GD Jr, Consiglio A, Lie DC, Squire LR, Gage FH (2009) Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem 16(2):147–154

    PubMed  Google Scholar 

  255. Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17(1):5–11

    PubMed  Google Scholar 

  256. Aggleton JP, Hunt PR, Rawlins JN (1986) The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav Brain Res 19(2):133–146

    PubMed  CAS  Google Scholar 

  257. Bachevalier J, Saunders RC, Mishkin M (1985) Visual recognition in monkeys: effects of transection of fornix. Exp Brain Res 57(3):547–553

    PubMed  CAS  Google Scholar 

  258. Cassaday HJ, Rawlins JN (1995) Fornix-fimbria section and working memory deficits in rats: stimulus complexity and stimulus size. Behav Neurosci 109(4):594–606

    PubMed  CAS  Google Scholar 

  259. Cassaday HJ, Rawlins JN (1997) The hippocampus, objects, and their contexts. Behav Neurosci 111(6):1228–1244

    PubMed  CAS  Google Scholar 

  260. Duva CA, Floresco SB, Wunderlich GR, Lao TL, Pinel JP, Phillips AG (1997) Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats. Behav Neurosci 111(6):1184–1196

    PubMed  CAS  Google Scholar 

  261. Forwood SE, Winters BD, Bussey TJ (2005) Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus 15(3):347–355

    PubMed  CAS  Google Scholar 

  262. Jackson-Smith P, Kesner RP, Chiba AA (1993) Continuous recognition of spatial and nonspatial stimuli in hippocampal-lesioned rats. Behav Neural Biol 59(2):107–119

    PubMed  CAS  Google Scholar 

  263. Mumby DG, Wood ER, Duva CA, Kornecook TJ, Pinel JP, Phillips AG (1996) Ischemia-induced object-recognition deficits in rats are attenuated by hippocampal ablation before or soon after ischemia. Behav Neurosci 110(2):266–281

    PubMed  CAS  Google Scholar 

  264. Rawlins JN, Lyford GL, Seferiades A, Deacon RM, Cassaday HJ (1993) Critical determinants of nonspatial working memory deficits in rats with conventional lesions of the hippocampus or fornix. Behav Neurosci 107(3):420–433

    PubMed  CAS  Google Scholar 

  265. Rothblat LA, Kromer LF (1991) Object recognition memory in the rat: the role of the hippocampus. Behav Brain Res 42(1):25–32

    PubMed  CAS  Google Scholar 

  266. Shaw C, Aggleton JP (1993) The effects of fornix and medial prefrontal lesions on delayed non-matching-to-sample by rats. Behav Brain Res 54(1):91–102

    PubMed  CAS  Google Scholar 

  267. Steele K, Rawlins JN (1993) The effects of hippocampectomy on performance by rats of a running recognition task using long lists of non-spatial items. Behav Brain Res 54(1):1–10

    PubMed  CAS  Google Scholar 

  268. Yee BK, Rawlins JN (1994) The effects of hippocampal formation ablation or fimbria-fornix section on performance of a nonspatial radial arm maze task by rats. J Neurosci 14(6):3766–3774

    PubMed  CAS  Google Scholar 

  269. Murray EA, Bussey TJ, Hampton RR, Saksida LM (2000) The parahippocampal region and object identification. Ann N Y Acad Sci 911:166–174

    PubMed  CAS  Google Scholar 

  270. Heynen AJ, Bear MF (2001) Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo. J Neurosci 21(24):9801–9813

    PubMed  CAS  Google Scholar 

  271. Tsanov M, Manahan-Vaughan D (2007) Intrinsic, light-independent and visual activity-dependent mechanisms cooperate in the shaping of the field response in rat visual cortex. J Neurosci 27(31):8422–8429

    PubMed  CAS  Google Scholar 

  272. Tsanov M, Manahan-Vaughan D (2007) The adult visual cortex expresses dynamic synaptic plasticity that is driven by the light/dark cycle. J Neurosci 27(31):8414–8421

    PubMed  CAS  Google Scholar 

  273. Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10(1):100–107

    PubMed  CAS  Google Scholar 

  274. Bachevalier J, Nemanic S (2008) Memory for spatial location and object–place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18(1):64–80. doi:10.1002/hipo.20369

    PubMed  Google Scholar 

  275. Otto T, Eichenbaum H (1992) Neuronal activity in the hippocampus during delayed non-match to sample performance in rats: evidence for hippocampal processing in recognition memory. Hippocampus 2(3):323–334

    PubMed  CAS  Google Scholar 

  276. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99(2):195–231

    PubMed  CAS  Google Scholar 

  277. Buzsaki G (1996) The hippocampo-neocortical dialogue. Cereb Cortex 6(2):81–92

    PubMed  CAS  Google Scholar 

  278. Kamondi A, Acsady L, Wang XJ, Buzsaki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8(3):244–261

    PubMed  CAS  Google Scholar 

  279. Kemp A, Manahan-Vaughan D (2007) Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci 30(3):111–118

    PubMed  CAS  Google Scholar 

  280. Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S (2004) NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci 5(5):361–372. doi:10.1038/nrn1385

    PubMed  CAS  Google Scholar 

  281. Manahan-Vaughan D, Braunewell KH (1999) Novelty acquisition is associated with induction of hippocampal long-term depression. Proc Natl Acad Sci USA 96(15):8739–8744

    PubMed  CAS  Google Scholar 

  282. Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26(29):7723–7729

    PubMed  CAS  Google Scholar 

  283. Kemp A, Manahan-Vaughan D (2004) Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. Proc Natl Acad Sci USA 101(21):8192–8197

    PubMed  CAS  Google Scholar 

  284. Kemp A, Manahan-Vaughan D (2008) The hippocampal CA1 region and dentate gyrus differentiate between environmental and spatial feature encoding through long-term depression. Cereb Cortex 18(4):968–977

    PubMed  Google Scholar 

  285. Galletti C, Battaglini PP (1989) Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. J Neurosci 9(4):1112–1125

    PubMed  CAS  Google Scholar 

  286. Krauzlis RJ (2004) Recasting the smooth pursuit eye movement system. J Neurophysiol 91(2):591–603

    PubMed  Google Scholar 

  287. McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7(7):757–763

    PubMed  CAS  Google Scholar 

  288. Ungerleider LG, Pasternak T (2004) Ventral and dorsal cortical processing streams. In: Chalupa LM, Werner JS (eds) In the visual neurosciences. The MIT Press, Cambridge, pp 541–562

    Google Scholar 

  289. Campos M, Cherian A, Segraves MA (2006) Effects of eye position upon activity of neurons in macaque superior colliculus. J Neurophysiol 95(1):505–526

    PubMed  Google Scholar 

  290. Rodman HR, Gross CG, Albright TD (1990) Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal. J Neurosci 10(4):1154–1164

    PubMed  CAS  Google Scholar 

  291. Stoerig P, Cowey A (2007) Blindsight. Curr Biol 17(19):R822–R824

    PubMed  CAS  Google Scholar 

  292. Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46(3):774–785

    PubMed  CAS  Google Scholar 

  293. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25

    PubMed  CAS  Google Scholar 

  294. Schmid MC, Mrowka SW, Turchi J, Saunders RC, Wilke M, Peters AJ, Ye FQ, Leopold DA (2010) Blindsight depends on the lateral geniculate nucleus. Nature 466(7304):373–377. doi:10.1038/nature09179

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Khan laboratory on visual memory is supported by grants from the Ministerio de Ciencia e Innovación (BFU2009-07641 and BFU2010-16500) and Junta de Andalucia (CTS 586/09-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar U. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Z.U., Martín-Montañez, E. & Baxter, M.G. Visual perception and memory systems: from cortex to medial temporal lobe. Cell. Mol. Life Sci. 68, 1737–1754 (2011). https://doi.org/10.1007/s00018-011-0641-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0641-6

Keywords

Navigation