Skip to main content
Log in

How Einstein Did Not Discover

  • Article
  • Published:
Physics in Perspective Aims and scope Submit manuscript

Abstract

What powered Einstein’s discoveries? Was it asking naïve questions, stubbornly? Was it a mischievous urge to break rules? Was it the destructive power of operational thinking? It was none of these. Rather, Einstein made his discoveries through lengthy, mundane investigations, pursued with tenacity and discipline. We have been led to think otherwise in part through Einstein’s brilliance at recounting in beguilingly simple terms a few brief moments of transcendent insight, and in part through our need to find a simple trick underlying his achievements. These ideas are illustrated with the examples of Einstein’s 1905 discoveries of special relativity and the light quantum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Essential Einstein (San Francisco: Pomegranate Art Books, 1995).

Fig. 2

Source: Albert Einstein, Relativity: The Special and General Theory, trans. R. W. Lawson (New York: Henry Holt and Co., 1921).

Fig. 3

Credit: Wikimedia Commons.

Fig. 4

Source: Millikan, “Determination of Planck’s ‘h,’” (ref. 49), 373.

Similar content being viewed by others

Notes

  1. One can only guess how such misperceptions arise. I have spent many long hours working through Einstein’s complicated mathematical computations in his Zurich notebook, which contains the computations made in preparation for general relativity.

  2. Although Einstein could not then have envisaged the details, this possibility is realized in the modern quantum theory. Images of diffraction patterns in photographic film arise from the accumulated impact of many localized photons.

  3. For the case of high frequency radiation, in section 5, Einstein computes the mean energy of each quanta as 3kT. Thus the total number of quanta n = E/3kT = (u/3kT)V, since E = uV.

  4. Here Millikan’s cites Planck, “Theorie des Gesetzes der Energieverteilung” (ref. 51).

  5. My choices: on the basis of his principle of equivalence, Einstein decided at the outset in 1907 that gravitational processes were to be incorporated into the theory by means of alterations to the structure of space and time. With that, one is led almost uniquely to general relativity by the further requirements of the Newtonian limit, that energy-momentum is to be conserved, and that gravitational energy is a source of gravity.

References

  1. Michel Janssen and Christoph Lehner, eds., The Cambridge Companion to Einstein (Cambridge: Cambridge University Press, 2014).

  2. Allan Franklin, “Physics Textbooks Don’t Always Tell the Truth,” Physics in Perspective 18 (2016), 3–57.

  3. Carl Seelig, Albert Einstein: A Documentary Biography, trans. Mervyn Savill (London: Staples Press, 1956), 70–71. This remark is elsewhere reported as written “in a letter” to Franck by Einstein. Albrecht Fölsing, Albert Einstein: A Biography, trans. Ewald Osers (New York: Viking, 1997), 13, 743. The citation on 743 gives no date for the letter and is to another of Seelig’s works. I have not located a letter from Einstein to Franck with this content.

  4. John A. Wheeler, “Albert Einstein 1879–1955,” Biographical Memoires of the National Academy of Sciences (Washington, DC: National Academy of Sciences, 1980), 102, http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/einstein-albert.pdf.

  5. Wheeler footnotes a German edition, but his text gives the quote from the English translation. Philipp Frank, Einstein: His Life and Times, trans. George Rosen, ed. and rev. Shuichi Kusaka (New York: Alfred A. Knopf, 1947), 206.

  6. Ibid.

  7. It is plausible that Frank was reporting correctly what Hilbert said. However, context matters and it is likely that Hilbert intended something narrow in his remarks. Einstein had been very slow to adopt and even disparaging of the four-dimensional methods of space-time geometry introduced by Hilbert’s Goettingen colleague, Hermann Minkowski. These methods were, presumably, something well known to “every boy in the streets of our mathematical Gottingen.” Hilbert’s own philosophical inclinations leant towards Immanuel Kant. Einstein dismissed the Kantian approach and, in his earlier years, favored a positivistic philosophy such as advanced by Ernst Mach. A Kantian in this time would be obliged to find that outlook naïve.

  8. Ibid., 112.

  9. Albert Einstein, “Zur Electrodynamik bewegter Körper,” Annalen der Physik 17 (1905), 891–921, translated as “On the Electrodynamics of Moving Bodies,” in H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity, trans. W. Perrett and G. B. Jeffery (London: Methuen and Co., 1923; repr., New York: Dover, 1952), 35–65.

  10. Lorentz, et al., Principle (ref. 9), 39.

  11. John D. Norton, “Einstein’s Investigations of Galilean Covariant Electrodynamics prior to 1905,” Archive for History of Exact Sciences 59 (2004), 45–105, on 49.

  12. Ibid.

  13. Einstein remarked on the importance of the experimental effects of stellar aberration and Fizeau’s measurements of the speed of light in moving water in his discovery of special relativity. I have conjectured in Norton, “Einstein’s Investigations” (ref. 11), section 7, that their importance lay in them being experimental manifestations of the relativity of simultaneity.

  14. Albert Einstein, “Über das Relativitätsprinzip und die ausdemselben gezogenen Folgerungen,” Jahrbuch der Radioaktivität und Elektronik 4 (1907), 411–62; on 413.

  15. Thomas Levenson and Ross MacDonald, “Einstein’s Gift for Simplicity,” Discover, September 30, 2004, http://discovermagazine.com/2004/sep/einsteins-gift-for-simplicity.

  16. Ibid.

  17. Albert Einstein, “Autobiographical Notes,” in P. A. Schilpp, ed., Albert Einstein, Philosopher-Scientist, 2nd ed. (1949; repr., New York: Tudor Publishing, 1951), 2–95. Reprinted with a correction as Albert Einstein: Autobiographical Notes (La Salle: Open Court, 1979), 49–50, 52–53.

  18. Albert Einstein, “Autobiographische Skizze,” in Helle Zeit—Dunkle Zeit, ed. Carl Seelig (Zurich: Europa Verlag, 1956), 9–17, on 10.

  19. Craig Loehle, Becoming a Successful Scientist: Strategic Thinking for Scientific Discovery (Cambridge: Cambridge University Press, 2010), 30–31.

  20. Howard Gardner, Frames of Mind: The Theory of Multiple Intelligences (New York: Basic, 2011), 157.

  21. Norton, “Einstein’s Investigations” (ref. 11), section 5; John D. Norton, “Chasing the Light: Einstein’s Most Famous Thought Experiment,” in Thought Experiments in Philosophy, Science and the Arts, ed. James Robert Brown, Mélanie Frappier, and Letitia Meynell (New York: Routledge, 2013), 123–40.

  22. Max Wertheimer, Productive Thinking, enlarged ed. (New York: Harper & Bros., 1959), 213.

  23. Ibid. 169.

  24. Ibid. 170.

  25. Norton, “Einstein’s Investigations” (ref. 11), section 5.

  26. Norton, “Einstein’s Investigations” (ref. 11), section 5; “Chasing the Light” (ref. 21).

  27. Albert Einstein, Relativity: The Special and the General Theory. A Popular Exposition, trans. R. W. Lawson (1917; London: Methuen & Co. 1920), chs. 9–10.

  28. Albert Einstein, “On the Electrodynamics of Moving Bodies,” in Lorentz et al., Principle (ref. 9), 41.

  29. Percy W. Bridgman, The Logic of Modern Physics (New York: MacMillan, 1927), 2.

  30. Hans Reichenbach, Philosophy of Space and Time (New York: Dover, 1957).

  31. Delo E. Mook and Thomas Vargish, Inside Relativity (Princeton: Princeton University Press, 1987), 54.

  32. Delo E. Mook and Thomas Vargish, Inside Relativity (Princeton: Princeton University Press, 1987), 54.

  33. Andreas Kamlah, “The Problem of Operational Definitions,” in Logic, Language, and the Structure of Scientific Theories, ed. W. Salmon and G. Wolters (Pittsburgh: University of Pittsburgh Press, 1994), 171–89, on 174.

  34. Peter Galison, Einstein’s Clocks, Poincaré’s Maps: Empires of Time (New York: W. W. Norton & Co., 2003).

  35. Ibid., 36–37.

  36. For a lengthier appraisal, see Alberto A. Martinez, “Material History and Imaginary Clocks: Poincaré, Einstein, and Galison on Simultaneity,” Physics in Perspective 6 (2004), 224–40.

  37. Ibid., 39.

  38. Ibid., 37.

  39. Ibid., 40.

  40. Kendall Madden, “Physicist and Historian Peter Galison to Deliver Hofstadter Lecture on Telativity,” Stanford Report, May 16, 2005, http://news.stanford.edu/news/2005/may18/hofstadter-051805.html.

  41. As quoted in Alice Calaprice, ed., The Ultimate Quotable Einstein (Princeton: Princeton University Press, 2011), 12, dated September 18, 1930.

  42. Albert Einstein, letter to Jost Winteler, July 8, 1901. Doc. 115 in John Stachel et al., eds., The Collected Papers of Albert Einstein: Volume 1: The Early Years: 1879–1902 (Princeton: Princeton University Press, 1987). Translation in Calaprice, Quotable Einstein (ref. 41), 161.

  43. Scott Thorpe, How to Think Like Einstein: Simple Ways to Break the Rules and Discover your Hidden Genius (Naperville, IL: Sourcebooks, 2015).

  44. Einstein, “Über das Relativitätsprinzip” (ref. 14).

  45. Gerald Holton, “Einstein, Michelson, and the ‘Crucial’ Experiment,” Isis 60 (1969), 132–97.

  46. P. Lenard, “Ueber die lichtelektrische Wirkung,”Annalen der Physik 313(5) (1902), 149–98.

  47. Albert Einstein, “Über einen die Erzeugung and Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik 17 (1905), 132–48.

  48. Robert Millikan, “Atomic Theories of Radiation,” Science 37(943) (1913), 119–33, on 132–33. His emphasis.

  49. Robert Millikan, “A Direct Photoelectric Determination of Planck’s ‘h,’” Physical Review 7 (1916), 355–388, on 388.

  50. Ibid., 355.

  51. Max Planck, “Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum,” Verahndlungen der Deutschen physikalischen Gesellschaft 2 (1900), 237–45. (Presented, December 14, 1900.).

  52. Einstein, Albert (1905). “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik 17(6) (1905), 132–48.

  53. John D. Norton, “Atoms Entropy Quanta: Einstein’s Miraculous Argument of 1905,” Studies in History and Philosophy of Modern Physics 37 (2006), 71–100; “Einstein’s Miraculous Argument of 1905: The Thermodynamic Grounding of Light Quanta,” in HQ1: Conference on the History of Quantum Physics, preprint 350, vol. 1, ed. C. Joas, C. Lehner, and J. Renn (Berlin: Max Planck Institute for the History of Science, 2008), 63–78, https://www.mpiwg-berlin.mpg.de/Preprints/P350.PDF.

  54. Albert Einstein, “Folgerungen aus dem Capillaritätserscheinungen,” Annalen der Physik 4 (1901), 513–23.

  55. Albert Einstein, “Ueber die thermodynamische Theorie der Potentialdifferenz zwischen Metallen and vollständig dissocierten Lösungen ihre Salze and über eine elektrische Methode zur Erforschung der Molecularkräfte,” Annalen der Physik 8 (1902), 798–814.

  56. Albert Einstein, Eine neue Bestimmung der Moleküldimensionen (Bern: Buchdruckerei K. J. Wyss 1905); also in Annalen der Physik 19 (1906), 289–305.

  57. Albert Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Annalen der Physik 17 (1905), 549–60.

  58. “Es ist bemerkenswert, daß man zus Herleitung dieser Gleichung … keine Voraussetzung über das Gesetz zu machen braucht, nachdem sich die Moleküle bewegen.” Albert Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen Der Physik 17 (1905), 132–48, on 142.

  59. Gilbert Grynberg, Alain Aspect, and Claude Fabre, Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge: Cambridge University Press, 2010), 179.

  60. Thomas S. Kuhn, Black-Body Theory and the Quantum Discontinuity (Oxford: Clarendon Press, 1978).

  61. Albert Einstein, “Zur Theorie der Lichterzeugung and Licht Ausbreitung,” Annalen der Physik 20 (1906), 199–206, on 199.

  62. Robert A. Millikan, “The Electron and the Light-Quant from the Experimental Point of View,” in Nobel Lectures, Physics 1922–1941 (Amsterdam: Elsevier, 1965), 61.

  63. Morris H. Shamos, ed., Great Experiments in Physics: Firsthand Accounts from Galileo to Einstein (New York: Holt, Rinehart and Winston, 1959; repr., New York: Dover, 1987), 233.

  64. Nobelprize.org, “The Nobel Prize in Physics 1921,” accessed April 21, 2016, http://www.nobelprize.org/nobel_prizes/physics/laureates/1921/.

  65. John D. Norton, “General Covariance and the Foundations of General Relativity: Eight Decades of Dispute,” Reports on Progress in Physics 56 (1993), 791–858.

  66. Michel Janssen, “‘No Success Like Failure …’: Einstein’s Quest for General Relativity, 1907–1920,” in Janssen and Lehner, Cambridge Companion (ref. 1), 167–227.

  67. As quoted in Abraham Pais, “Subtle is the Lord…”: The Science and the Life of Albert Einstein (Oxford: Oxford University Press, 1982), 382.

  68. As described in John D. Norton, “Einstein as the Greatest of the Nineteenth Century Physicists,” in Proceedings, Seventh Quadrennial Fellows Conference of the Center for Philosophy of Science (12–14 June 2012; Mugla, Turkey), 142–51, http://philsci-archive.pitt.edu/9135/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Norton.

Additional information

John D. Norton is Distinguished Professor of History and Philosophy of Science at the University of Pittsburgh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norton, J.D. How Einstein Did Not Discover. Phys. Perspect. 18, 249–282 (2016). https://doi.org/10.1007/s00016-016-0186-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00016-016-0186-z

Keywords

Navigation