Skip to main content
Log in

Surgery groups of the fundamental groups of hyperplane arrangement complements

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Using a recent result of Bartels and Lück (The Borel conjecture for hyperbolic and CAT(0)-groups (preprint) \({{\tt arXiv:0901.0442v1}}\)) we deduce that the Farrell–Jones Fibered Isomorphism conjecture in \({L^{\langle -\infty \rangle}}\)-theory is true for any group which contains a finite index strongly poly-free normal subgroup, in particular, for the Artin full braid groups. As a consequence we explicitly compute the surgery groups of the Artin pure braid groups. This is obtained as a corollary to a computation of the surgery groups of a more general class of groups, namely for the fundamental group of the complement of any fiber-type hyperplane arrangement in \({{\mathbb C}^n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aravinda C.S., Farrell F.T., Roushon S.K.: Algebraic K-theory of pure braid groups. Asian J. Math. 4, 337–344 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Artin E.: Theory of braids. Ann. of Math. (2) 48, 101–126 (1947)

    Article  MathSciNet  Google Scholar 

  3. Bartels A., Lück W.: Isomorphism Conjecture for homotopy K-theory and groups acting on trees. J. Pure Appl. Algebra 205, 660–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bartels and W. Lück, The Borel conjecture for hyperbolic and CAT(0)-groups, preprint, \({{\tt arXiv:0901.0442v1}}\).

  5. J. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, Princeton University Press, Princeton, New Jersey, 1974.

  6. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Die Grundlehren der mathematischen Wissenschaften, 319. Springer-Verlag, Berlin, 1999.

  7. K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer-Verlag, New York Heidelberg Berlin, 1982.

  8. Farrell F.T., Jones L.E.: Isomorphism conjectures in algebraic K-theory. J. Amer. Math. Soc. 6, 249–297 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Farrell F.T., Roushon S.K.: The Whitehead groups of braid groups vanish. Internat. Math. Res. Notices 10, 515–526 (2000)

    Article  MathSciNet  Google Scholar 

  10. Fox R., Neuwirth L.: The braid groups. Math. Scand. 10, 119–126 (1962)

    MathSciNet  MATH  Google Scholar 

  11. J. Hempel, 3-manifolds, Ann. of Math. Studies, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976.

  12. C. Kassel and V. Turaev, Braid groups, With the graphical assistance of Olivier Dodane, Graduate Texts in Mathematics 247, Springer, New York, 2008.

  13. Leeb B.: 3-manifolds with(out) metrics of nonpositive curvature. Invent. Math. 122, 277–289 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lück W.: The Farrell-Jones conjecture in algebraic K- and L-theory. Enseign. Math. (2) 54, 140–141 (2008)

    Google Scholar 

  15. W. Lück and H. Reich, The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, In Handbook of K-theory Volume 2, edited by E. M. Friedlander, D. R. Grayson, 703–842, Springer-Verlag, 2005.

  16. Orlik P., Terao H.: Arrangements of Hyperplanes. Springer-Verlag, Berlin, New York (1992)

    MATH  Google Scholar 

  17. F. Quinn, A geometric formulation of surgery, 1970 Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) pp. 500–511 Markham, Chicago, Ill.

  18. Quinn F.: \({B_{(TOP_n)^{\sim}}}\) and the surgery obstruction. Bull. Amer. Math. Soc. 77, 596–600 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. A. Ranicki, The total surgery obstruction, Lecture Notes in Math. 763, Springer-Verlag, New York 1979, 275–316.

  20. A. A. Ranicki, Algebraic L-theory and topological manifolds, Cambridge Tracts in Mathematics 102, Cambridge University Press, Cambridge, 1992.

  21. Roushon S.K.: Algebraic K-theory of groups wreath product with finite groups. Topology Appl. 154, 1921–1930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schaper C.: Suspensions of affine arrangements. Math. Ann. 309, 463–473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Roushon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roushon, S. Surgery groups of the fundamental groups of hyperplane arrangement complements. Arch. Math. 96, 491–500 (2011). https://doi.org/10.1007/s00013-011-0243-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-011-0243-4

Mathematics Subject Classification (2010)

Keywords

Navigation