Skip to main content

Advertisement

Log in

Fraxetin alleviates BLM-induced idiopathic pulmonary fibrosis by inhibiting NCOA4-mediated epithelial cell ferroptosis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Idiopathic pulmonary fibrosis (IPF) is a debilitating lung condition with few available treatments. The early driver of wound repair that contributes to IPF has been extensively identified as repetitive alveolar epithelial damage. According to recent reports, IPF is linked to ferroptosis, a unique type of cell death characterized by a fatal buildup of iron and lipid peroxidation.

Objective and method

There is little information on epithelial cells that induce pulmonary fibrosis by going through ferroptosis. In this study, we used bleomycin (BLM) to examine the impact of ferroptosis on IPF in mouse lung epithelial cells (MLE-12).

Results

We discovered that BLM increases ferroptosis in MLE-12. Additionally, we found that NCOA4 is overexpressed and plays a key role in the ferroptosis of epithelial cells throughout the IPF process. Using Molecular docking, we found that Fraxetin, a natural component extracted from Fraxinus rhynchophylla, formed a stable binding to NCOA4. In vitro investigations showed that Fraxetin administration greatly decreased ferroptosis and NCOA4 expression, which in turn lowered the release of inflammatory cytokines.

Conclusion

Fraxetin treatment significantly alleviated BLM-induced lung inflammation and fibrosis. Our findings imply that fraxetin possesses inhibitory roles in ferroptosis and can be a potential drug against IPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

IPF:

Idiopathic pulmonary fibrosis

ROS:

Lipid reactive oxygen species

MLE-12:

Mouse lung epithelial cells

AEC:

Alveolar epithelial cells

BALF:

Bronchoalveolar lavage

MDA:

Lipid oxidation

GSH:

Total glutathione peroxidase

ATP5a:

Oxidative phosphorylation marker

SLC7A11:

Solute carrier family members

GPX4:

Glutathione peroxidase enzyme 4

EpCAM:

Epithelial cells

References

  1. Wakwaya Y, Ramdurai D, Swigris JJ. Managing cough in idiopathic pulmonary fibrosis. Chest. 2021;160(5):1774–82.

    Article  PubMed  Google Scholar 

  2. Singla A, Reuter S, Taube C, Peters M, Peters K. The molecular mechanisms of remodeling in asthma, COPD and IPF with a special emphasis on the complex role of Wnt5A. Inflamm Res. 2023;72(3):577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wollin L, Distler JHW, Redente EF, Riches DWH, Stowasser S, Schlenker-Herceg R, et al. Potential of nintedanib in treatment of progressive fibrosing interstitial lung diseases. Eur Respir J. 2019;54(3):1900161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kropski JA, Blackwell TS. Progress in understanding and treating idiopathic pulmonary fibrosis. Annu Rev Med. 2019;70:211–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin C, Borensztajn K, Spek CA. Targeting coagulation factor receptors - protease-activated receptors in idiopathic pulmonary fibrosis. J Thromb Haemost. 2017;15(4):597–607.

    Article  CAS  PubMed  Google Scholar 

  6. Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol. 2022;17:515–46.

    Article  PubMed  Google Scholar 

  7. Kadota T, Fujita Y, Araya J, Watanabe N, Fujimoto S, Kawamoto H, et al. Human bronchial epithelial cell-derived extracellular vesicle therapy for pulmonary fibrosis via inhibition of TGF-β-WNT crosstalk. J Extracell Vesicles. 2021;10(10): e12124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Della Latta V, Cecchettini A, Del Ry S, Morales MA. Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res. 2015;97:122–30.

    Article  CAS  PubMed  Google Scholar 

  9. Kolb P, Upagupta C, Vierhout M, Ayaub E, Bellaye PS, Gauldie J, et al. The importance of interventional timing in the bleomycin model of pulmonary fibrosis. Eur Respir J. 2020;55(6):1901105.

    Article  CAS  PubMed  Google Scholar 

  10. Pei Z, Qin Y, Fu X, Yang F, Huo F, Liang X, et al. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biol. 2022;57: 102509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22(7):381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng L, He S, Guo N, Tian W, Zhang W, Luo L. Molecular mechanisms of ferroptosis and relevance to inflammation. Inflamm Res. 2023;72(2):281–99.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Kang R, Kroemer G, Tang D. Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021. https://doi.org/10.1084/jem.20210518.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li M, Wang K, Zhang Y, Fan M, Li A, Zhou J, et al. Ferroptosis-related genes in bronchoalveolar lavage fluid serves as prognostic biomarkers for idiopathic pulmonary fibrosis. Front Med (Lausanne). 2021;8: 693959.

    Article  PubMed  Google Scholar 

  17. He Y, Shang Y, Li Y, Wang M, Yu D, Yang Y, et al. An 8-ferroptosis-related genes signature from bronchoalveolar lavage fluid for prognosis in patients with idiopathic pulmonary fibrosis. BMC Pulm Med. 2022;22(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma Z, Sun Y, Peng W. Fraxetin down-regulates polo-like kinase 4 (PLK4) to inhibit proliferation, migration and invasion of prostate cancer cells through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Bioengineered. 2022;13(4):9345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee M, Yang C, Park S, Song G, Lim W. Fraxetin induces cell death in colon cancer cells via mitochondria dysfunction and enhances therapeutic effects in 5-fluorouracil resistant cells. J Cell Biochem. 2022;123(2):469–80.

    Article  CAS  PubMed  Google Scholar 

  20. Wu B, Wang R, Li S, Wang Y, Song F, Gu Y, et al. Antifibrotic effects of Fraxetin on carbon tetrachloride-induced liver fibrosis by targeting NF-κB/IκBα, MAPKs and Bcl-2/Bax pathways. Pharmacol Rep. 2019;71(3):409–16.

    Article  CAS  PubMed  Google Scholar 

  21. Hsieh Y-H, Hung T-W, Chen Y-S, Huang Y-N, Chiou H-L, Lee C-C, et al. In vitro and in vivo antifibrotic effects of fraxetin on renal interstitial fibrosis via the ERK signaling pathway. Toxins (Basel). 2021;13(7):474.

    Article  CAS  PubMed  Google Scholar 

  22. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jennings GC. Patient-doctor communication. N Z Med J. 1970;72(460):205.

    CAS  PubMed  Google Scholar 

  24. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fuhrmann DC, Mondorf A, Beifuß J, Jung M, Brüne B. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 2020;36: 101670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu F, Zhang Q, Liu H, Liu J, Yang S, Luo X, et al. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov. 2022;8(1):40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shenderov K, Collins SL, Powell JD, Horton MR. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest. 2021. https://doi.org/10.1172/JCI143226.

    Article  PubMed  PubMed Central  Google Scholar 

  28. O’Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C, Falkowski NR, et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(9):1127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Confalonieri P, Volpe MC, Jacob J, Maiocchi S, Salton F, Ruaro B, et al. Regeneration or repair? The role of alveolar epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cells. 2022;11(13):2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heukels P, Moor CC, von der Thüsen JH, Wijsenbeek MS, Kool M. Inflammation and immunity in IPF pathogenesis and treatment. Respir Med. 2019;147:79–91.

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. Ferroptosis and cancer: mitochondria meet the “Iron Maiden” cell death. Cells. 2020;9(6):1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022;13:1039241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;277: 121110.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Wang Y, Huang D, Shi S, Pei C, Wu Y, et al. Astragaloside IV regulates the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to inhibit PM2.5-mediated lung injury in mice. Int Immunopharmacol. 2022;112: 109186.

    Article  CAS  PubMed  Google Scholar 

  36. Gong Z, Wang Y, Li L, Li X, Qiu B, Hu Y. Cardamonin alleviates chondrocytes inflammation and cartilage degradation of osteoarthritis by inhibiting ferroptosis via p53 pathway. Food Chem Toxicol. 2023;174: 113644.

    Article  CAS  PubMed  Google Scholar 

  37. Fang J, Yuan Q, Du Z, Zhang Q, Yang L, Wang M, et al. Overexpression of GPX4 attenuates cognitive dysfunction through inhibiting hippocampus ferroptosis and neuroinflammation after traumatic brain injury. Free Radic Biol Med. 2023;204:68–81.

    Article  CAS  PubMed  Google Scholar 

  38. Chen H, He A, Li H, Chen H, Xie H, Luo L, et al. TSSK4 upregulation in alveolar epithelial type-II cells facilitates pulmonary fibrosis through HSP90-AKT signaling restriction and AT-II apoptosis. Cell Death Dis. 2021;12(10):938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao J, Li J, Wei D, Gao F, Yang X, Yue B, et al. Liproxstatin-1 alleviates lung transplantation-induced cold ischemia-reperfusion injury by inhibiting ferroptosis. Transplantation. 2023. https://doi.org/10.1097/TP.0000000000004638.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dong T, Fan X, Zheng N, Yan K, Hou T, Peng L, et al. Activation of Nrf2 signaling pathway by tectoridin protects against ferroptosis in particulate matter-induced lung injury. Br J Pharmacol. 2023. https://doi.org/10.1111/bph.16085.

    Article  PubMed  Google Scholar 

  41. Gong Y, Liu Z, Zhang Y, Zhang J, Zheng Y, Wu Z. AGER1 deficiency-triggered ferroptosis drives fibrosis progression in nonalcoholic steatohepatitis with type 2 diabetes mellitus. Cell Death Discov. 2023;9(1):178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fang Y, Chen X, Tan Q, Zhou H, Xu J, Gu Q. Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action. ACS Cent Sci. 2021;7(6):980–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li K, Chen B, Xu A, Shen J, Li K, Hao K, et al. TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells. Redox Biol. 2022;56: 102451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei X, Liu M, Zheng Z, Yu S, Huang L, Ma J, et al. Defective NCOA4-dependent ferroptosis in senescent fibroblasts retards diabetic wound healing. Cell Death Discov. 2023;9(1):138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robe K, Conejero G, Gao F, Lefebvre-Legendre L, Sylvestre-Gonon E, Rofidal V, et al. Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process. New Phytol. 2021;229(4):2062–79.

    Article  CAS  PubMed  Google Scholar 

  46. Yin Y, Wang L, Chen G, You H. Effect of fraxetin on oxidative damage caused by isoproterenol-induced myocardial infarction in rats. Appl Biochem Biotechnol. 2022;194(12):5666–79.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Wang L, Deng Y, Zhao P, Deng W, Zhang J, et al. Fraxetin Suppresses proliferation of non-small-cell lung cancer cells via preventing activation of signal transducer and activator of transcription 3. Tohoku J Exp Med. 2019;248(1):3.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J, Chang J, Beg MA, Huang W, Zhao Y, Dai W, et al. Na/K-ATPase suppresses LPS-induced pro-inflammatory signaling through Lyn. iScience. 2022;25(9): 104963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang S-R, Park J-R, Kang K-S. Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases. Oxid Med Cell Longev. 2015;2015: 486263.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Chen Z, Luo J, Zhang J, Sang AM, Cheng Z-S, et al. Salidroside postconditioning attenuates ferroptosis-mediated lung ischemia-reperfusion injury by activating the Nrf2/SLC7A11 signaling axis. Int Immunopharmacol. 2023;115: 109731.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81800065, 82003769), the National Postdoctoral Science Foundation of China (2021M691292); the Postdoctoral Science Foundation of Jiangsu Province (2020Z132).

Author information

Authors and Affiliations

Authors

Contributions

YN and XZ: designed the experiments; XZ, JZ, JL, and ZW: performed the experiments and analyzed the data; YN, XZ and GZ: prepared the manuscript.

Corresponding author

Correspondence to Yunjuan Nie.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval and consent to participate

The animal experiments involved in this experiment were approved by the Animal Protection and Use Committee of Jiangnan University (JN. No 20211130 m1720615[501]).

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Zhu, J., Li, J. et al. Fraxetin alleviates BLM-induced idiopathic pulmonary fibrosis by inhibiting NCOA4-mediated epithelial cell ferroptosis. Inflamm. Res. 72, 1999–2012 (2023). https://doi.org/10.1007/s00011-023-01800-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01800-5

Keywords

Navigation