Skip to main content

Advertisement

Log in

Cuproptosis-related gene CDKN2A as a molecular target for IPF diagnosis and therapeutics

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Idiopathic pulmonary fibrosis (IPF) is a progressive chronic interstitial lung disease with limited therapeutic options. Cuproptosis is a recently proposed novel form of programmed cell death, which has been strongly implicated in the development of various human diseases. However, the prognostic and therapeutic value of cuproptosis-related genes (CRGs) in IPF remains to be elucidated.

Methods

In the present study, weighted gene co-expression network analysis (WGCNA) was employed to identify the key CRGs associated with the development of IPF. The subsequent GSEA, immune cell correlation analysis, and single-cell RNA-Seq analysis were conducted to explore the potential role of the identified CRGs in IPF. In addition, ROC curves and survival analysis were used to assess the prognostic value of the key CRGs in IPF. Moreover, we explored the molecular mechanisms of participation of identified key CRGs in the development of pulmonary fibrogenesis through in vivo and in vitro experiments.

Results

The expression level of cyclin-dependent kinase inhibitor 2A (CDKN2A) is upregulated in the lung tissues of IPF patients and associated with disease severity. Notably, CDKN2A was constitutively expressed by fibrosis-promoting M2 macrophages. Decreased CDKN2A expression sensitizes M2 macrophages to elesclomol-induced cuproptosis in vitro. Inhibition of CDKN2A decreases the number of viable macrophages and attenuates bleomycin-induced pulmonary fibrosis in mice.

Conclusion

These findings indicate that CDKN2A mediates the resistance of fibrosis-promoting M2 macrophages to cuproptosis and promotes pulmonary fibrosis in mice. Our work provides fresh insights into CRGs in IPF with potential value for research in the pathogenesis, diagnosis, and a new therapy strategy for IPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support this study are available within the article and its Supplementary data files or available from the authors upon request.

References

  1. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389:1941–52.

    Article  PubMed  Google Scholar 

  2. King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378:1949–61.

    Article  PubMed  Google Scholar 

  3. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators. J Clin Invest. 2012;122:2756–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maher TM, Bendstrup E, Dron L, Langley J, Smith G, Khalid JM, et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res. 2021;22:197.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hutchinson J, Fogarty A, Hubbard R, McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J. 2015;46:795–806.

    Article  PubMed  Google Scholar 

  7. Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183:431–40.

    Article  PubMed  Google Scholar 

  8. Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 2008;4:176–85.

    Article  CAS  PubMed  Google Scholar 

  9. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Zhang L, Zhou F. Cuproptosis: a new form of programmed cell death. Cell Mol Immunol. 2022;19:867–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kahlson MA, Dixon SJ. Copper-induced cell death. Science. 2022;375:1231–2.

    Article  CAS  PubMed  Google Scholar 

  12. Lai Y, Lin C, Lin X, Wu L, Zhao Y, Lin F. Identification and immunological characterization of cuproptosis-related molecular clusters in Alzheimer’s disease. Front Aging Neurosci. 2022;14: 932676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao J, Guo S, Schrodi S, He D. Cuproptosis and cuproptosis-related genes in rheumatoid arthritis: Implication, prospects, and perspectives. Front Immunol. 2022;13: 930278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Zhang Y, Wang L, Zhang N, Xu W, Zhou J, et al. Development and experimental verification of a prognosis model for cuproptosis-related subtypes in HCC. Hepatol Int. 2022. https://doi.org/10.1007/s12072-022-10381-0.

    Article  PubMed  Google Scholar 

  15. Li Y, Fang G, Cao W, Yuan J, Song S, Peng H, et al. Ezh2 inhibits replicative senescence of atrial fibroblasts through promotion of H3K27me3 in the promoter regions of CDKN2a and Timp4 genes. J Inflamm Res. 2022;15:4693–708.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A. 1996;93:13742–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee H, Nam S, Kim M, Kim S, Back S, Yoo H. Butyrate prevents TGF-β1-induced alveolar myofibroblast differentiation and modulates energy metabolism. Metabolites. 2021;11:258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao YD, Yin L, Archer S, Lu C, Zhao G, Yao Y, et al. Metabolic heterogeneity of idiopathic pulmonary fibrosis: a metabolomic study. BMJ Open Respir Res. 2017;4: e000183.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xie T, Wang Y, Deng N, Huang G, Taghavifar F, Geng Y, et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 2018;22:3625–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199:1517–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu L, Yang Y, Han X, Hou J. The identification and validation of hub genes associated with advanced IPF by weighted gene co-expression network analysis. Funct Integr Genom. 2022. https://doi.org/10.1007/s10142-022-00901-4.

    Article  Google Scholar 

  22. Li Z, Zhang H, Wang X, Wang Q, Xue J, Shi Y, et al. Identification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front Immunol. 2022;13: 996836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hou J, Ji J, Chen X, Cao H, Tan Y, Cui Y, et al. Alveolar epithelial cell-derived Sonic hedgehog promotes pulmonary fibrosis through OPN-dependent alternative macrophage activation. Febs j. 2021;288:3530–46.

    Article  CAS  PubMed  Google Scholar 

  26. Hou J, Shi J, Chen L, Lv Z, Chen X, Cao H, et al. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis. Cell Commun Signal. 2018;16:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hou J, Ji Q, Ji J, Ju S, Xu C, Yong X, et al. Co-delivery of siPTPN13 and siNOX4 via (myo)fibroblast-targeting polymeric micelles for idiopathic pulmonary fibrosis therapy. Theranostics. 2021;11:3244–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji J, Hou J, Xia Y, Xiang Z, Han X. NLRP3 inflammasome activation in alveolar epithelial cells promotes myofibroblast differentiation of lung-resident mesenchymal stem cells during pulmonary fibrogenesis. Biochim Biophys Acta Mol Basis Dis. 2021;1867: 166077.

    Article  CAS  PubMed  Google Scholar 

  29. Hübner RH, Gitter W, El Mokhtari NE, Mathiak M, Both M, Bolte H, et al. Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques. 2008;44(507–11):14–7.

    Google Scholar 

  30. Pullamsetti SS, Savai R, Dumitrascu R, Dahal BK, Wilhelm J, Konigshoff M, et al. The role of dimethylarginine dimethylaminohydrolase in idiopathic pulmonary fibrosis. Sci Transl Med. 2011. https://doi.org/10.1126/scitranslmed.3001725.

    Article  PubMed  Google Scholar 

  31. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang W, Ohno S, Steer B, Klee S, Staab-Weijnitz CA, Wagner D, et al. S100a4 is secreted by alternatively activated alveolar macrophages and promotes activation of lung fibroblasts in pulmonary fibrosis. Front Immunol. 2018;9:1216.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS, Zhang L, et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol. 2014;134:1422-32.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. VinuÉ Á, MartÍnez-HervÁs S, Herrero-Cervera A, SÁnchez-GarcÍa V, AndrÉs-Blasco I, Piqueras L, et al. Changes in CDKN2A/2B expression associate with T-cell phenotype modulation in atherosclerosis and type 2 diabetes mellitus. Transl Res. 2019;203:31–48.

  35. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11:R77.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, et al. An official American Thoracic Society Workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol. 2017;56:667–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mekhael O, Naiel S, Vierhout M, Hayat AI, Revill SD, Abed S, et al. Mouse models of lung fibrosis. Methods Mol Biol. 2021;2299:291–321.

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto A, Saito T, Hosoya T, Kawahata K, Asano Y, Sato S, et al. Therapeutic effect of cyclin-dependent kinase 4/6 inhibitor on dermal fibrosis in murine models of systemic sclerosis. Arthritis Rheumatol. 2022;74:860–70.

    Article  CAS  PubMed  Google Scholar 

  39. Lai Y, Lin C, Lin X, Wu L, Zhao Y, Lin F. Identification and immunological characterization of cuproptosis-related molecular clusters in Alzheimer’s disease. Front Aging Neurosci. 2022;14: 932676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cai Z, He Y, Yu Z, Hu J, Xiao Z, Zu X, et al. Cuproptosis-related modification patterns depict the tumor microenvironment, precision immunotherapy, and prognosis of kidney renal clear cell carcinoma. Front Immunol. 2022;13: 933241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han Y, Wu J, Gong Z, Zhou Y, Li H, Wang B, et al. Identification and development of a novel 5-gene diagnostic model based on immune infiltration analysis of osteoarthritis. J Transl Med. 2021;19:522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feng S, Xu Y, Dai Z, Yin H, Zhang K, Shen Y. Integrative analysis from multicenter studies identifies a WGCNA-derived cancer-associated fibroblast signature for ovarian cancer. Front Immunol. 2022;13: 951582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Du Y, Hao X, Liu X. Low expression of long noncoding RNA CDKN2B-AS1 in patients with idiopathic pulmonary fibrosis predicts lung cancer by regulating the p53-signaling pathway. Oncol Lett. 2018;15:4912–8.

    PubMed  PubMed Central  Google Scholar 

  44. Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16:1197–206.

    Article  CAS  PubMed  Google Scholar 

  45. Martin N, Beach D, Gil J. Ageing as developmental decay: insights from p16(INK4a.). Trends Mol Med. 2014;20:667–74.

    Article  CAS  PubMed  Google Scholar 

  46. Bernard M, Yang B, Migneault F, Turgeon J, Dieudé M, Olivier MA, et al. Autophagy drives fibroblast senescence through MTORC2 regulation. Autophagy. 2020;16:2004–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghosh AK, O’Brien M, Mau T, Qi N, Yung R. Adipose tissue senescence and inflammation in aging is reversed by the Young Milieu. J Gerontol A Biol Sci Med Sci. 2019;74:1709–15.

    Article  CAS  PubMed  Google Scholar 

  48. Del Rey MJ, Valín Á, Usategui A, Ergueta S, Martín E, Municio C, et al. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immun Ageing. 2019;16:29.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gibbons M, MacKinnon A, Ramachandran P, Dhaliwal K, Duffin R, Phythian-Adams A, et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med. 2011;184:569–81.

    Article  CAS  PubMed  Google Scholar 

  50. Hosoya T, Iwai H, Yamaguchi Y, Kawahata K, Miyasaka N, Kohsaka H. Cell cycle regulation therapy combined with cytokine blockade enhances antiarthritic effects without increasing immune suppression. Ann Rheum Dis. 2016;75:253–9.

    Article  CAS  PubMed  Google Scholar 

  51. Gao YY, Yang RQ, Lou KL, Dang YY, Dong YY, He YY, et al. In vivo visualization of fluorescence reflecting CDK4 activity in a breast cancer mouse model. MedComm. 2020;2022(3): e136.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Provincial Double-Innovation Doctor Program and Jiangsu Key Discipline Fund for the 14th Five-Year Plan (Biology).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, B.X. and K.Y.; methodology and formal analysis, B.X., K.Y., L.L., X.H., and J.H.; original draft preparation, B.X. and K.Y.; writing—review and editing, X.H. and J.H.; funding acquisition, X.H. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jiwei Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All animal procedures were approved by the Animal Care and Use Committee of Nanjing University under the animal protocol number SYXK (Su) 2009–0017.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2501 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Yang, K., Han, X. et al. Cuproptosis-related gene CDKN2A as a molecular target for IPF diagnosis and therapeutics. Inflamm. Res. 72, 1147–1160 (2023). https://doi.org/10.1007/s00011-023-01739-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01739-7

Keywords

Navigation