Skip to main content

Advertisement

Log in

Tissue-resident immune cells in the pathogenesis of multiple sclerosis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) in which genetic and environmental factors contribute to disease progression. Both innate and adaptive immune cells, including T cells, B cells, activated macrophages and microglia, have been identified to be involved in the pathogenesis of MS, leading to the CNS inflammation, neurodegeneration and demyelination. In recent years, there has been considerable progress in understanding the contribution of tissue-resident immune cells in the pathogenesis of MS.

Methods

We performed a keyword-based search in PubMed database. We combined “multiple sclerosis” with keywords, such as tissue-resident memory T cells, microglia to search for relevant literatures in PubMed.

Results and conclusion

In this review, we comprehensively describe the characteristics of tissue-resident memory T cells and microglia, summarize their role in the pathogenesis of MS, and discuss their interaction with other immune cells in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol. 2007;8:913–9. https://doi.org/10.1038/ni1507.

    Article  CAS  PubMed  Google Scholar 

  2. Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol. 2009;9:393–407. https://doi.org/10.1038/nri2550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018;378:169–80. https://doi.org/10.1056/NEJMra1401483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bashinskaya VV, Kulakova OG, Boyko AN, Favorov AV, Favorova OO. A review of genome-wide association studies for multiple sclerosis: classical and hypothesis-driven approaches. Hum Genet. 2015;134:1143–62. https://doi.org/10.1007/s00439-015-1601-2.

    Article  CAS  PubMed  Google Scholar 

  5. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13:25–36. https://doi.org/10.1038/nrneurol.2016.187.

    Article  CAS  PubMed  Google Scholar 

  6. Rothhammer V, Quintana FJ. Environmental control of autoimmune inflammation in the central nervous system. Curr Opin Immunol. 2016;43:46–53. https://doi.org/10.1016/j.coi.2016.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baranzini SE, Oksenberg JR. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet. 2017;33:960–70. https://doi.org/10.1016/j.tig.2017.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cencioni MT, Mattoscio M, Magliozzi R, Bar-Or A, Muraro PA. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat Rev Neurol. 2021;17:399–414. https://doi.org/10.1038/s41582-021-00498-5.

    Article  PubMed  Google Scholar 

  9. Kaskow BJ, Baecher-Allan C. Effector T cells in multiple sclerosis. Cold Spring Harb Perspect Med. 2018. https://doi.org/10.1101/cshperspect.a029025.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dong Y, Yong VW. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat Rev Neurol. 2019;15:704–17. https://doi.org/10.1038/s41582-019-0253-6.

    Article  PubMed  Google Scholar 

  11. Cheuk S, Schlums H, Gallais Serezal I, Martini E, Chiang SC, Marquardt N, et al. CD49a expression defines tissue-resident CD8(+) T cells poised for cytotoxic function in human skin. Immunity. 2017;46:287–300. https://doi.org/10.1016/j.immuni.2017.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hombrink P, Helbig C, Backer RA, Piet B, Oja AE, Stark R, et al. Programs for the persistence, vigilance and control of human CD8(+) lung-resident memory T cells. Nat Immunol. 2016;17:1467–78. https://doi.org/10.1038/ni.3589.

    Article  CAS  PubMed  Google Scholar 

  13. Sun H, Sun C, Xiao W, Sun R. Tissue-resident lymphocytes: from adaptive to innate immunity. Cell Mol Immunol. 2019;16:205–15. https://doi.org/10.1038/s41423-018-0192-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fransen NL, Hsiao CC, van der Poel M, Engelenburg HJ, Verdaasdonk K, Vincenten MCJ, et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain. 2020;143:1714–30. https://doi.org/10.1093/brain/awaa117.

    Article  PubMed  Google Scholar 

  15. Koda Y, Teratani T, Chu PS, Hagihara Y, Mikami Y, Harada Y, et al. CD8(+) tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat Commun. 2021;12:4474. https://doi.org/10.1038/s41467-021-24734-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krebs CF, Reimers D, Zhao Y, Paust HJ, Bartsch P, Nunez S, et al. Pathogen-induced tissue-resident memory TH17 (TRM17) cells amplify autoimmune kidney disease. Sci Immunol. 2020. https://doi.org/10.1126/sciimmunol.aba4163.

    Article  PubMed  Google Scholar 

  17. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18:1069–76. https://doi.org/10.1038/nm.2817.

    Article  CAS  PubMed  Google Scholar 

  18. Yang K, Kallies A. Tissue-specific differentiation of CD8(+) resident memory T cells. Trends Immunol. 2021;42:876–90. https://doi.org/10.1016/j.it.2021.08.002.

    Article  CAS  PubMed  Google Scholar 

  19. Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity. 2014;41:886–97. https://doi.org/10.1016/j.immuni.2014.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat Immunol. 2013;14:1285–93. https://doi.org/10.1038/ni.2745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernandez-Ruiz D, Ng WY, Holz LE, Ma JZ, Zaid A, Wong YC, et al. Liver-resident memory CD8(+) T cells form a front-line defense against malaria liver-stage infection. Immunity. 2016;45:889–902. https://doi.org/10.1016/j.immuni.2016.08.011.

    Article  CAS  PubMed  Google Scholar 

  22. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN, et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc Natl Acad Sci U S A. 2012;109:7037–42. https://doi.org/10.1073/pnas.1202288109.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shwetank AHA, Frost EL, Schmitz HM, Mockus TE, Youngblood BA, et al. Maintenance of PD-1 on brain-resident memory CD8 T cells is antigen independent. Immunol Cell Biol. 2017;95:953–9. https://doi.org/10.1038/icb.2017.62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mockus TE, Shwetank LMD, Ren HM, Netherby CS, Salameh T, et al. CD4 T cells control development and maintenance of brain-resident CD8 T cells during polyomavirus infection. PLoS Pathog. 2018;14:e1007365. https://doi.org/10.1371/journal.ppat.1007365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Graham JB, Da Costa A, Lund JM. Regulatory T cells shape the resident memory T cell response to virus infection in the tissues. J Immunol. 2014;192:683–90. https://doi.org/10.4049/jimmunol.1202153.

    Article  CAS  PubMed  Google Scholar 

  26. Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J, Smyth G, et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J Immunol. 2012;189:3462–71. https://doi.org/10.4049/jimmunol.1201305.

    Article  CAS  PubMed  Google Scholar 

  27. Prasad S, Hu S, Sheng WS, Chauhan P, Singh A, Lokensgard JR. The PD-1: PD-L1 pathway promotes development of brain-resident memory T cells following acute viral encephalitis. J Neuroinflamm. 2017;14:82. https://doi.org/10.1186/s12974-017-0860-3.

    Article  CAS  Google Scholar 

  28. Smolders J, Heutinck KM, Fransen NL, Remmerswaal EBM, Hombrink P, Ten Berge IJM, et al. Tissue-resident memory T cells populate the human brain. Nat Commun. 2018;9:4593. https://doi.org/10.1038/s41467-018-07053-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shwetank ELF, Mockus TE, Ren HM, Toprak M, Lauver MD, et al. PD-1 dynamically regulates inflammation and development of brain-resident memory CD8 T cells during persistent viral encephalitis. Front Immunol. 2019;10:783. https://doi.org/10.3389/fimmu.2019.00783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prasad S, Hu S, Sheng WS, Chauhan P, Lokensgard JR. Reactive glia promote development of CD103(+) CD69(+) CD8(+) T-cells through programmed cell death-ligand 1 (PD-L1). Immun Inflamm Dis. 2018;6:332–44. https://doi.org/10.1002/iid3.221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kok L, Masopust D, Schumacher TN. The precursors of CD8(+) tissue resident memory T cells: from lymphoid organs to infected tissues. Nat Rev Immunol. 2022;22:283–93. https://doi.org/10.1038/s41577-021-00590-3.

    Article  CAS  PubMed  Google Scholar 

  32. Carlson CM, Endrizzi BT, Wu J, Ding X, Weinreich MA, Walsh ER, et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature. 2006;442:299–302. https://doi.org/10.1038/nature04882.

    Article  CAS  PubMed  Google Scholar 

  33. Kurd NS, He Z, Louis TL, Milner JJ, Omilusik KD, Jin W, et al. Early precursors and molecular determinants of tissue-resident memory CD8(+) T lymphocytes revealed by single-cell RNA sequencing. Sci Immunol. 2020. https://doi.org/10.1126/sciimmunol.aaz6894.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zaid A, Mackay LK, Rahimpour A, Braun A, Veldhoen M, Carbone FR, et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc Natl Acad Sci U S A. 2014;111:5307–12. https://doi.org/10.1073/pnas.1322292111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boddupalli CS, Nair S, Gray SM, Nowyhed HN, Verma R, Gibson JA, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Investig. 2016;126:3905–16. https://doi.org/10.1172/JCI85329.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mackay LK, Minnich M, Kragten NA, Liao Y, Nota B, Seillet C, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science. 2016;352:459–63. https://doi.org/10.1126/science.aad2035.

    Article  CAS  PubMed  Google Scholar 

  37. Kragten NAM, Behr FM, Vieira Braga FA, Remmerswaal EBM, Wesselink TH, Oja AE, et al. Blimp-1 induces and Hobit maintains the cytotoxic mediator granzyme B in CD8 T cells. Eur J Immunol. 2018;48:1644–62. https://doi.org/10.1002/eji.201847771.

    Article  CAS  PubMed  Google Scholar 

  38. Shan Q, Zeng Z, Xing S, Li F, Hartwig SM, Gullicksrud JA, et al. The transcription factor Runx3 guards cytotoxic CD8(+) effector T cells against deviation towards follicular helper T cell lineage. Nat Immunol. 2017;18:931–9. https://doi.org/10.1038/ni.3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Milner JJ, Toma C, Yu B, Zhang K, Omilusik K, Phan AT, et al. Runx3 programs CD8(+) T cell residency in non-lymphoid tissues and tumours. Nature. 2017;552:253–7. https://doi.org/10.1038/nature24993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang N, Bevan MJ. Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity. 2013;39:687–96. https://doi.org/10.1016/j.immuni.2013.08.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol. 2013;14:1294–301. https://doi.org/10.1038/ni.2744.

    Article  CAS  PubMed  Google Scholar 

  42. Mackay LK, Wynne-Jones E, Freestone D, Pellicci DG, Mielke LA, Newman DM, et al. T-box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate. Immunity. 2015;43:1101–11. https://doi.org/10.1016/j.immuni.2015.11.008.

    Article  CAS  PubMed  Google Scholar 

  43. Laidlaw BJ, Zhang N, Marshall HD, Staron MM, Guan T, Hu Y, et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity. 2014;41:633–45. https://doi.org/10.1016/j.immuni.2014.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Christo SN, Evrard M, Park SL, Gandolfo LC, Burn TN, Fonseca R, et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nat Immunol. 2021;22:1140–51. https://doi.org/10.1038/s41590-021-01004-1.

    Article  CAS  PubMed  Google Scholar 

  45. Steinbach K, Vincenti I, Kreutzfeldt M, Page N, Muschaweckh A, Wagner I, et al. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J Exp Med. 2016;213:1571–87. https://doi.org/10.1084/jem.20151916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maru S, Jin G, Schell TD, Lukacher AE. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection. PLoS Pathog. 2017;13: e1006318. https://doi.org/10.1371/journal.ppat.1006318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Korn T, Kallies A. T cell responses in the central nervous system. Nat Rev Immunol. 2017;17:179–94. https://doi.org/10.1038/nri.2016.144.

    Article  CAS  PubMed  Google Scholar 

  48. Wakim LM, Woodward-Davis A, Bevan MJ. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci U S A. 2010;107:17872–9. https://doi.org/10.1073/pnas.1010201107.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Machado-Santos J, Saji E, Troscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain. 2018;141:2066–82. https://doi.org/10.1093/brain/awy151.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Steinbach K, Vincenti I, Egervari K, Kreutzfeldt M, van der Meer F, Page N, et al. Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aav5519.

    Article  PubMed  Google Scholar 

  51. Beltran E, Gerdes LA, Hansen J, Flierl-Hecht A, Krebs S, Blum H, et al. Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis. J Clin Investig. 2019;129:4758–68. https://doi.org/10.1172/JCI128475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Frieser D, Pignata A, Khajavi L, Shlesinger D, Gonzalez-Fierro C, Nguyen XH, et al. Tissue-resident CD8(+) T cells drive compartmentalized and chronic autoimmune damage against CNS neurons. Sci Transl Med. 2022;14:eabl6157. https://doi.org/10.1126/scitranslmed.abl6157.

    Article  CAS  PubMed  Google Scholar 

  53. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron. 2018;97:742–68. https://doi.org/10.1016/j.neuron.2018.01.021.

    Article  CAS  PubMed  Google Scholar 

  54. Sabatino JJ Jr, Probstel AK, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci. 2019;20:728–45. https://doi.org/10.1038/s41583-019-0233-2.

    Article  CAS  PubMed  Google Scholar 

  55. Ren HM, Kolawole EM, Ren M, Jin G, Netherby-Winslow CS, Wade Q, et al. IL-21 from high-affinity CD4 T cells drives differentiation of brain-resident CD8 T cells during persistent viral infection. Sci Immunol. 2020. https://doi.org/10.1126/sciimmunol.abb5590.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vincenti I, Page N, Steinbach K, Yermanos A, Lemeille S, Nunez N, et al. Tissue-resident memory CD8(+) T cells cooperate with CD4(+) T cells to drive compartmentalized immunopathology in the CNS. Sci Transl Med. 2022;14:eabl6058. https://doi.org/10.1126/scitranslmed.abl6058.

    Article  CAS  PubMed  Google Scholar 

  57. Di Liberto G, Pantelyushin S, Kreutzfeldt M, Page N, Musardo S, Coras R, et al. Neurons under T cell attack coordinate phagocyte-mediated synaptic stripping. Cell. 2018;175(458–471): e19. https://doi.org/10.1016/j.cell.2018.07.049.

    Article  CAS  Google Scholar 

  58. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14:463–77. https://doi.org/10.1038/nri3705.

    Article  CAS  PubMed  Google Scholar 

  59. Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. 2014;32:367–402. https://doi.org/10.1146/annurev-immunol-032713-120240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol Med. 2019;25:112–23. https://doi.org/10.1016/j.molmed.2018.11.005.

    Article  CAS  PubMed  Google Scholar 

  61. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8. https://doi.org/10.1126/science.1110647.

    Article  CAS  PubMed  Google Scholar 

  62. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13:1118–28. https://doi.org/10.1038/ni.2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16:273–80. https://doi.org/10.1038/nn.3318.

    Article  CAS  PubMed  Google Scholar 

  64. Jordao MJC, Sankowski R, Brendecke SM, Sagar LG, Tai YH, et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science. 2019. https://doi.org/10.1126/science.aat7554.

    Article  PubMed  Google Scholar 

  65. Masuda T, Sankowski R, Staszewski O, Bottcher C, Sagar AL, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388–92. https://doi.org/10.1038/s41586-019-0924-x.

    Article  CAS  PubMed  Google Scholar 

  66. Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M, et al. Novel Hexb-based tools for studying microglia in the CNS. Nat Immunol. 2020;21:802–15. https://doi.org/10.1038/s41590-020-0707-4.

    Article  CAS  PubMed  Google Scholar 

  67. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 2019;50(253–271): e6. https://doi.org/10.1016/j.immuni.2018.11.004.

    Article  CAS  Google Scholar 

  68. Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun. 2020;11:6129. https://doi.org/10.1038/s41467-020-19737-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017;157:247–72. https://doi.org/10.1016/j.pneurobio.2016.01.005.

    Article  CAS  PubMed  Google Scholar 

  70. Gao Z, Tsirka SE. Animal models of MS reveal multiple roles of microglia in disease pathogenesis. Neurol Res Int. 2011;2011: 383087. https://doi.org/10.1155/2011/383087.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med. 2005;11:146–52. https://doi.org/10.1038/nm1177.

    Article  CAS  PubMed  Google Scholar 

  72. Gonzalez H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol. 2014;274:1–13. https://doi.org/10.1016/j.jneuroim.2014.07.012.

    Article  CAS  PubMed  Google Scholar 

  73. Mayo L, Quintana FJ, Weiner HL. The innate immune system in demyelinating disease. Immunol Rev. 2012;248:170–87. https://doi.org/10.1111/j.1600-065X.2012.01135.x.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Miron VE, Franklin RJ. Macrophages and CNS remyelination. J Neurochem. 2014;130:165–71. https://doi.org/10.1111/jnc.12705.

    Article  CAS  PubMed  Google Scholar 

  75. Bhasin M, Wu M, Tsirka SE. Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunol. 2007;8:10. https://doi.org/10.1186/1471-2172-8-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med. 2014;211:1533–49. https://doi.org/10.1084/jem.20132477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med. 2005;11:335–9. https://doi.org/10.1038/nm1202.

    Article  CAS  PubMed  Google Scholar 

  78. Windhagen A, Newcombe J, Dangond F, Strand C, Woodroofe MN, Cuzner ML, et al. Expression of costimulatory molecules B7–1 (CD80), B7–2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med. 1995;182:1985–96. https://doi.org/10.1084/jem.182.6.1985.

    Article  CAS  PubMed  Google Scholar 

  79. Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, Boersma WJ, et al. CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A. 1996;93:2499–504. https://doi.org/10.1073/pnas.93.6.2499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015;16:229–36. https://doi.org/10.1038/ni.3102.

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. 2015;160:1061–71. https://doi.org/10.1016/j.cell.2015.01.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705. https://doi.org/10.1016/j.neuron.2012.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Re F, Belyanskaya SL, Riese RJ, Cipriani B, Fischer FR, Granucci F, et al. Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation. J Immunol. 2002;169:2264–73. https://doi.org/10.4049/jimmunol.169.5.2264.

    Article  CAS  PubMed  Google Scholar 

  84. Esen N, Kielian T. Effects of low dose GM-CSF on microglial inflammatory profiles to diverse pathogen-associated molecular patterns (PAMPs). J Neuroinflamm. 2007;4:10. https://doi.org/10.1186/1742-2094-4-10.

    Article  CAS  Google Scholar 

  85. Matyszak MK, Denis-Donini S, Citterio S, Longhi R, Granucci F, Ricciardi-Castagnoli P. Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. Eur J Immunol. 1999;29:3063–76. https://doi.org/10.1002/(SICI)1521-4141(199910)29:10%3c3063::AID-IMMU3063%3e3.0.CO;2-G.

    Article  CAS  PubMed  Google Scholar 

  86. Choi SS, Lee HJ, Lim I, Satoh J, Kim SU. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS ONE. 2014;9: e92325. https://doi.org/10.1371/journal.pone.0092325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Murphy AC, Lalor SJ, Lynch MA, Mills KH. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun. 2010;24:641–51. https://doi.org/10.1016/j.bbi.2010.01.014.

    Article  CAS  PubMed  Google Scholar 

  88. Prajeeth CK, Lohr K, Floess S, Zimmermann J, Ulrich R, Gudi V, et al. Effector molecules released by Th1 but not Th17 cells drive an M1 response in microglia. Brain Behav Immun. 2014;37:248–59. https://doi.org/10.1016/j.bbi.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  89. Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 2011;17:495–9. https://doi.org/10.1038/nm.2324.

    Article  CAS  PubMed  Google Scholar 

  90. Huang Y, Zhao L, Jia B, Wu L, Li Y, Curthoys N, et al. Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders. J Neurosci. 2011;31:15195–204. https://doi.org/10.1523/JNEUROSCI.2051-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chabot S, Williams G, Yong VW. Microglial production of TNF-alpha is induced by activated T lymphocytes. Involvement of VLA-4 and inhibition by interferonbeta-1b. J Clin Investig. 1997;100:604–12. https://doi.org/10.1172/JCI119571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ye SM, Johnson RW. Increased interleukin-6 expression by microglia from brain of aged mice. J Neuroimmunol. 1999;93:139–48. https://doi.org/10.1016/s0165-5728(98)00217-3.

    Article  CAS  PubMed  Google Scholar 

  93. Guadagno J, Swan P, Shaikh R, Cregan SP. Microglia-derived IL-1beta triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis. 2015;6: e1779. https://doi.org/10.1038/cddis.2015.151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M, Shapira I, et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci U S A. 2009;106:7119–24. https://doi.org/10.1073/pnas.0902745106.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43. https://doi.org/10.1038/nn.3599.

    Article  CAS  PubMed  Google Scholar 

  96. Hur EM, Youssef S, Haws ME, Zhang SY, Sobel RA, Steinman L. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat Immunol. 2007;8:74–83. https://doi.org/10.1038/ni1415.

    Article  CAS  PubMed  Google Scholar 

  97. Derkow K, Kruger C, Dembny P, Lehnardt S. Microglia induce neurotoxic IL-17+ gammadelta T cells dependent on TLR2, TLR4, and TLR9 activation. PLoS ONE. 2015;10: e0135898. https://doi.org/10.1371/journal.pone.0135898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mildner A, Mack M, Schmidt H, Bruck W, Djukic M, Zabel MD, et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain. 2009;132:2487–500. https://doi.org/10.1093/brain/awp144.

    Article  PubMed  Google Scholar 

  99. Ponomarev ED, Maresz K, Tan Y, Dittel BN. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci. 2007;27:10714–21. https://doi.org/10.1523/JNEUROSCI.1922-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kohno H, Maeda T, Perusek L, Pearlman E, Maeda A. CCL3 production by microglial cells modulates disease severity in murine models of retinal degeneration. J Immunol. 2014;192:3816–27. https://doi.org/10.4049/jimmunol.1301738.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81971542, 82171771, 82271854), the Young Talent Cultivation Program of Jiangsu University.

Author information

Authors and Affiliations

Authors

Contributions

KR conceptualized the study. JT wrote the manuscript. All the authors contributed to manuscript editing and revision.

Corresponding author

Correspondence to Ke Rui.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Jiang, L., Chen, Z. et al. Tissue-resident immune cells in the pathogenesis of multiple sclerosis. Inflamm. Res. 72, 363–372 (2023). https://doi.org/10.1007/s00011-022-01677-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01677-w

Keywords

Navigation