Skip to main content

Advertisement

Log in

Extracellular histones induce inflammation and senescence of vascular smooth muscle cells by activating the AMPK/FOXO4 signaling pathway

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Sepsis is an abnormal immune-inflammatory response that is mainly caused by infection. It can lead to life-threatening organ dysfunction and death. Severely damaged tissue cells will release intracellular histones into the circulation as damage-related molecular patterns (DAMPs) to accelerate the systemic immune response. Although various histone-related cytotoxicity mechanisms have been explored, those that affect extracellular histones involved in vascular smooth muscle cell (VSMC) dysfunction are yet to be determined.

Methods

Mouse aortic vascular smooth muscle cells (VSMCs) were stimulated with different concentrations of histones, and cell viability was detected by CCK-8 assay. Cellular senescence was assessed by SA β-gal staining. C57BL/6 mice were treated with histones with or without BML-275 treatment. RT-qPCR was performed to determine the expression of inflammatory cytokines. Western blotting was used to analyze the expression of NLRP3, ASC and caspase-1 inflammasome proteins. The interaction of NLRP3 and ASC was detected by CoIP and immunofluorescence staining.

Results

In this study, we found that extracellular histones induced senescence and inflammatory response in a dose-dependent manner in cultured VSMCs. Histone treatment significantly promoted apoptosis-associated speck-like protein containing CARD (ASC) as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3) interaction of inflammasomes in VSMCs. Forkhead box protein O4 (FOXO4), which is a downstream effector molecule of extracellular histones, was found to be involved in histone-regulated VSMC inflammatory response and senescence. Furthermore, the 5'-AMP-activated protein kinase (AMPK) signaling pathway was confirmed to mediate extracellular histone-induced FOXO4 expression, and blocking this signaling pathway with an inhibitor can suppress vascular inflammation induced by extracellular histones in vivo and in vitro.

Conclusion

Extracellular histones induce inflammation and senescence in VSMCs, and blocking the AMPK/FOXO4 pathway is a potential target for the treatment of histonemediated organ injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASC:

Apoptosis-associated speck-like protein containing CARD

NLRP3:

NACHT, LRR and PYD domains-containing protein 3

FOXO4:

Forkhead box protein O4

LPS:

Lipopolysaccharide

AMPK:

5′-AMP-activated protein kinase

VSMC:

Vascular smooth muscle cell

References

  1. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353: i1585.

    Article  PubMed  Google Scholar 

  2. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193:259–72.

    Article  CAS  PubMed  Google Scholar 

  3. Xie J, Wang H, Kang Y, Zhou L, Liu Z, Qin B, et al. The epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey. Crit Care Med. 2020;48:e209–18.

    Article  PubMed  Google Scholar 

  4. Zheng C, Li D, Zhan W, He K, Yang H. Downregulation of SENP1 suppresses LPS-induced macrophage inflammation by elevating Sp3 SUMOylation and disturbing Sp3-NF-kappaB interaction. Am J Transl Res. 2020;12:7439–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019;7:2050312119835043.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114:529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hollenberg SM, Cunnion RE. Endothelial and vascular smooth muscle function in sepsis. J Crit Care. 1994;9:262–80.

    Article  CAS  PubMed  Google Scholar 

  8. Rho SS, Ando K, Fukuhara S. Dynamic regulation of vascular permeability by vascular endothelial cadherin-mediated endothelial cell-cell junctions. J Nippon Med Sch. 2017;84:148–59.

    Article  CAS  PubMed  Google Scholar 

  9. Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018;14:417–27.

    Article  PubMed  Google Scholar 

  10. Szatmary P, Huang W, Criddle D, Tepikin A, Sutton R. Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. J Cell Mol Med. 2018;22:4617–29.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Allam R, Kumar SV, Darisipudi MN, Anders HJ. Extracellular histones in tissue injury and inflammation. J Mol Med (Berl). 2014;92:465–72.

    Article  CAS  Google Scholar 

  12. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187:160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ibanez-Cabellos JS, Aguado C, Perez-Cremades D, Garcia-Gimenez JL, Bueno-Beti C, Garcia-Lopez EM, et al. Extracellular histones activate autophagy and apoptosis via mTOR signaling in human endothelial cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:3234–46.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Wan D, Luo X, Song T, Wang Y, Yu Q, et al. Circulating histones in sepsis: potential outcome predictors and therapeutic targets. Front Immunol. 2021;12: 650184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zetoune FS, Ward PA. Role of complement and histones in sepsis. Front Med. 2020;7: 616957.

    Article  Google Scholar 

  16. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi CX, Wang Y, Chen Q, Jiao FZ, Pei MH, Gong ZJ. Extracellular histone H3 induces pyroptosis during sepsis and may act through NOD2 and VSIG4/NLRP3 pathways. Front Cell Infect Microbiol. 2020;10:196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Villalba N, Baby S, Cha BJ, Yuan SY. Site-specific opening of the blood-brain barrier by extracellular histones. J Neuroinflammation. 2020;17:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strela FB, Brun BF, Berger RCM, Melo S, de Oliveira EM, Barauna VG, et al. Lipopolysaccharide exposure modulates the contractile and migratory phenotypes of vascular smooth muscle cells. Life Sci. 2020;241: 117098.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao G, Zhong Y, Su W, Liu S, Song X, Hou T, et al. Transcriptional suppression of CPI-17 gene expression in vascular smooth muscle cells by tumor necrosis factor, Kruppel-like factor 4, and Sp1 is associated with lipopolysaccharide-induced vascular hypocontractility, hypotension, and mortality. Mol Cell Biol. 2019;39:e00070-19.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhai J, Qi A, Zhang Y, Jiao L, Liu Y, Shou S. Bioinformatics analysis for multiple gene expression profiles in sepsis. Med Sci Monit. 2020;26: e920818.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Balamuth F, Alpern ER, Kan M, Shumyatcher M, Hayes K, Lautenbach E, et al. Gene expression profiles in children with suspected sepsis. Ann Emerg Med. 2020;75:744–54.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Endo M, Tanaka Y, Otsuka M, Minami Y. E2F1-Ror2 signaling mediates coordinated transcriptional regulation to promote G1/S phase transition in bFGF-stimulated NIH/3T3 fibroblasts. FASEB J. 2020;34:3413–28.

    Article  CAS  PubMed  Google Scholar 

  24. Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020;202:361–70.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, et al. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol Ther. 2018;26:1375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Englert JA, Christman JW, Ballinger MN. Unhinging the machinery of sepsis: an unexpected role for vascular smooth muscle. J Leukoc Biol. 2018;104:661–3.

    Article  CAS  PubMed  Google Scholar 

  27. Sandbo N, Taurin S, Yau DM, Kregel S, Mitchell R, Dulin NO. Downregulation of smooth muscle alpha-actin expression by bacterial lipopolysaccharide. Cardiovasc Res. 2007;74:262–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wurster SH, Wang P, Dean RE, Chaudry IH. Vascular smooth muscle contractile function is impaired during early and late stages of sepsis. J Surg Res. 1994;56:556–61.

    Article  CAS  PubMed  Google Scholar 

  29. Nair RR, Mazza D, Brambilla F, Gorzanelli A, Agresti A, Bianchi ME. LPS-challenged macrophages release microvesicles coated with histones. Front Immunol. 2018;9:1463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Marsman G, Zeerleder S, Luken BM. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis. 2016;7: e2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen R, Xie Y, Zhong X, Fu Y, Huang Y, Zhen Y, et al. Novel chemokine-like activities of histones in tumor metastasis. Oncotarget. 2016;7:61728–40.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187:2626–31.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar SV, Kulkarni OP, Mulay SR, Darisipudi MN, Romoli S, Thomasova D, et al. Neutrophil extracellular trap-related extracellular histones cause vascular necrosis in severe GN. J Am Soc Nephrol. 2015;26:2399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M, et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology. 2011;54:999–1008.

    Article  CAS  PubMed  Google Scholar 

  35. Deng JS, Jiang WP, Chen CC, Lee LY, Li PY, Huang WC, et al. Cordyceps cicadae mycelia ameliorate cisplatin-induced acute kidney injury by suppressing the TLR4/NF-kappaB/MAPK and activating the HO-1/Nrf2 and Sirt-1/AMPK pathways in mice. Oxid Med Cell Longev. 2020;2020:7912763.

    PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Nguyen PT, Wang X, Zhao Y, Meacham CE, Zou Z, et al. TLR9 and beclin 1 crosstalk regulates muscle AMPK activation in exercise. Nature. 2020;578:605–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vaez H, Najafi M, Toutounchi NS, Barar J, Barzegari A, Garjani A. Metformin alleviates lipopolysaccharide-induced acute lung injury through suppressing toll-like receptor 4 signaling. Iran J Allergy Asthma Immunol. 2016;15:498–507.

    PubMed  Google Scholar 

  38. Tadie JM, Bae HB, Deshane JS, Bell CP, Lazarowski ER, Chaplin DD, et al. Toll-like receptor 4 engagement inhibits adenosine 5’-monophosphate-activated protein kinase activation through a high mobility group box 1 protein-dependent mechanism. Mol Med. 2012;18:659–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tia N, Singh AK, Pandey P, Azad CS, Chaudhary P, Gambhir IS. Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene. 2018;648:97–105.

    Article  CAS  PubMed  Google Scholar 

  40. Coomans de Brachene A, Demoulin JB. FOXO transcription factors in cancer development and therapy. Cell Mol Life Sci. 2016;73:1159–72.

    Article  CAS  PubMed  Google Scholar 

  41. Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120:2479–87.

    Article  CAS  PubMed  Google Scholar 

  42. He Y, Wang C, Zhang X, Lu X, Xing J, Lv J, et al. Sustained exposure to Helicobacter pylori lysate inhibits apoptosis and autophagy of gastric epithelial cells. Front Oncol. 2020;10: 581364.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Deng Y, Zhang H. WITHDRAWN: knockdown of lncRNA AK139128 alleviates cardiomyocyte autophagy and apoptosis of induced by myocardial hypoxia-reoxygenation injury via targeting miR-499/FOXO4 axis. Gene. 2019.

  44. Bourgeois B, Madl T. Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett. 2018;592:2083–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu M, Goetsch SC, Wang Z, Luo R, Hill JA, Schneider J, et al. FoxO4 promotes early inflammatory response upon myocardial infarction via endothelial Arg1. Circ Res. 2015;117:967–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Silhan J, Vacha P, Strnadova P, Vecer J, Herman P, Sulc M, et al. 14-3-3 protein masks the DNA binding interface of forkhead transcription factor FOXO4. J Biol Chem. 2009;284:19349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun X, Thorne RF, Zhang XD, He M, Li J, Feng S, et al. LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1alpha-FOXO4-p21-dependent signaling axis. EMBO Rep. 2020;21: e48796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Keizer PL, Packer LM, Szypowska AA, Riedl-Polderman PE, van den Broek NJ, de Bruin A, et al. Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res. 2010;70:8526–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Correction to: Unspliced XBP1 Confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction. Circ Res. 2018;122:e66.

  50. Collier DM, Villalba N, Sackheim A, Bonev AD, Miller ZD, Moore JS, et al. Extracellular histones induce calcium signals in the endothelium of resistance-sized mesenteric arteries and cause loss of endothelium-dependent dilation. Am J Physiol Heart Circ Physiol. 2019;316:H1309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dai M, Yang B, Chen J, Liu F, Zhou Y, Zhou Y, et al. Nuclear-translocation of ACLY induced by obesity-related factors enhances pyrimidine metabolism through regulating histone acetylation in endometrial cancer. Cancer Lett. 2021;513:36–49.

    Article  CAS  PubMed  Google Scholar 

  52. Dai X, Bu X, Gao Y, Guo J, Hu J, Jiang C, et al. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol Cell. 2021;81(2317–2331): e2316.

    Google Scholar 

  53. Ma Y, Zheng B, Zhang XH, Nie ZY, Yu J, Zhang H, et al. circACTA2 mediates Ang II-induced VSMC senescence by modulation of the interaction of ILF3 with CDK4 mRNA. Aging (Albany NY). 2021;13:11610–28.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Zhuhai Medical Research Fund Project (no. 911292645025).

Author information

Authors and Affiliations

Authors

Contributions

Hang Yang and Yong-Yan Luo conceived and designed the experiments. Hang Yang, Kai-Ran He, and Lue-Tao Zhang performed all the experiments. Kai-Ran He and Hang Yang analyzed the data. Xiao-Jun Lin and Yang Hang wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hang Yang.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 147 kb)

Supplementary file2 (PDF 42 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Luo, YY., Zhang, LT. et al. Extracellular histones induce inflammation and senescence of vascular smooth muscle cells by activating the AMPK/FOXO4 signaling pathway. Inflamm. Res. 71, 1055–1066 (2022). https://doi.org/10.1007/s00011-022-01618-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01618-7

Keywords

Navigation