Skip to main content

Advertisement

Log in

Silencing circANKRD36 inhibits streptozotocin-induced insulin resistance and inflammation in diabetic rats by targeting miR-145 via XBP1

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus (DM) is defined as a group of metabolic diseases characterized by hyperglycemia, which results from a deficiency in insulin secretion and/or insulin action. In diabetic patients, type 2 diabetes mellitus (T2DM) is in the majority. We explored the effects of circANKRD36 on streptozotocin (STZ)-induced insulin resistance and inflammation in diabetic rats with the aim of uncovering the underlying mechanism.

Methods

STZ was used to induce the in vivo T2DM rat model. After circANKRD36 interference, blood glucose, insulin and adiponectin were respectively detected. Hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) were conducted to examine inflammation and apoptosis in T2DM rats, and western blot was used for detecting apoptosis-related proteins. The binding relationships among circANKRD36, miR-145 and XBP1 were examined by luciferase reporter assay.

Results

Results showed that circANKRD36 was expressed at a high level in T2DM rats, while silencing circANKRD36 led to decreased blood glucose and insulin, accompanied by increased adiponectin level, and ameliorating insulin resistance. Silencing circANKRD36 alleviated the inflammation and suppressed cell apoptosis in the pancreatic tissues of T2DM rats, which was abated by miR-145 inhibitor. The binding of miR-145 to XBP1 was then confirmed. Additionally, miR-145 inhibitor increased the level of XBP1 in T2DM rats, which was decreased in the presence of circANKRD36 silencing.

Conclusion

This study is the first to prove that silencing circANKRD36 inhibits STZ-induced insulin resistance and inflammation in diabetic rats by targeting miR- 145 via XBP1. The results warrant the importance of circRNAs as drug target and thereby pave way for the development of newer therapeutic measures for T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Al-Kafaji G, Al-Mahroos G, Alsayed NA, Hasan ZA, Nawaz S, Bakhiet M. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol Med Rep. 2015;12(5):7485–90. https://doi.org/10.3892/mmr.2015.4416.

    Article  CAS  PubMed  Google Scholar 

  2. Allagnat F, Christulia F, Ortis F, Pirot P, Lortz S, Lenzen S, Eizirik DL, Cardozo AK. Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia. 2010;53(6):1120–30. https://doi.org/10.1007/s00125-010-1699-7.

    Article  CAS  PubMed  Google Scholar 

  3. American Diabetes, Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81-90. https://doi.org/10.2337/dc14-S081.

    Article  Google Scholar 

  4. Bajaj M, Defronzo RA. Metabolic and molecular basis of insulin resistance. J Nucl Cardiol. 2003;10(3):311–23. https://doi.org/10.1016/s1071-3581(03)00520-8.

    Article  PubMed  Google Scholar 

  5. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Van Obberghen E. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem. 2007;282(27):19575–88. https://doi.org/10.1074/jbc.M611841200.

    Article  CAS  PubMed  Google Scholar 

  6. Chan JY, Luzuriaga J, Maxwell EL, West PK, Bensellam M, Laybutt DR. The balance between adaptive and apoptotic unfolded protein responses regulates beta-cell death under ER stress conditions through XBP1, CHOP and JNK. Mol Cell Endocrinol. 2015;413:189–201. https://doi.org/10.1016/j.mce.2015.06.025.

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Chen J, Hua X, Sun Y, Cui R, Sha J, Zhu X. The emerging role of XBP1 in cancer. Biomed Pharmacother. 2020;127:110069. https://doi.org/10.1016/j.biopha.2020.110069.

    Article  CAS  PubMed  Google Scholar 

  8. Cutler RG, Davis BJ, Ingram DK, Roth GS. Plasma concentrations of glucose, insulin, and percent glycosylated hemoglobin are unaltered by food restriction in rhesus and squirrel monkeys. J Gerontol. 1992;47(1):B9-12. https://doi.org/10.1093/geronj/47.1.b9.

    Article  CAS  PubMed  Google Scholar 

  9. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76(1):149–55. https://doi.org/10.1172/JCI111938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang Y, Wang X, Li W, Han J, Jin J, Su F, Zhang J, et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med. 2018;42(4):1865–74. https://doi.org/10.3892/ijmm.2018.3783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guariguata L. Contribute data to the 6th edition of the IDF diabetes atlas. Diabetes Res Clin Pract. 2013;100(2):280–1. https://doi.org/10.1016/j.diabres.2013.02.006.

    Article  PubMed  Google Scholar 

  12. Guo R, Zhang L, Meng J. Circular RNA ANKRD36 attends to lipopolysaccharide-aroused MRC-5 cell injury via regulating microRNA-31-3p. BioFactors. 2020;46(3):391–401. https://doi.org/10.1002/biof.1592.

    Article  CAS  PubMed  Google Scholar 

  13. Hassler JR, Scheuner DL, Wang S, Han J, Kodali VK, Li P, Nguyen J, et al. The IRE1alpha/XBP1s pathway is essential for the glucose response and protection of beta cells. PLoS Biol. 2015;13(10):e1002277. https://doi.org/10.1371/journal.pbio.1002277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heuvelman VD, Van Raalte DH, Smits MM. Cardiovascular effects of glucagon-like peptide 1 receptor agonists: from mechanistic studies in humans to clinical outcomes. Cardiovasc Res. 2020;116(5):916–30. https://doi.org/10.1093/cvr/cvz323.

    Article  CAS  PubMed  Google Scholar 

  15. Hui Y, Yin Y. MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-kappaB signaling. Life Sci. 2018;207:212–8. https://doi.org/10.1016/j.lfs.2018.06.005.

    Article  CAS  PubMed  Google Scholar 

  16. Leonard BE, Wegener G. Inflammation, insulin resistance and neuroprogression in depression. Acta Neuropsychiatr. 2020;32(1):1–9. https://doi.org/10.1017/neu.2019.17.

    Article  PubMed  Google Scholar 

  17. Liu W, Zhou X, Li Y, Zhang S, Cai X, Zhang R, Gong S, Han X, Ji L. Serum leptin, resistin, and adiponectin levels in obese and non-obese patients with newly diagnosed type 2 diabetes mellitus: a population-based study. Medicine (Baltimore). 2020;99(6):e19052. https://doi.org/10.1097/MD.0000000000019052.

    Article  Google Scholar 

  18. Piperi C, Adamopoulos C, Papavassiliou AG. XBP1: a pivotal transcriptional regulator of glucose and lipid metabolism. Trends Endocrinol Metab. 2016;27(3):119–22. https://doi.org/10.1016/j.tem.2016.01.001.

    Article  CAS  PubMed  Google Scholar 

  19. Pratipanawatr W, Pratipanawatr T, Cusi K, Berria R, Adams JM, Jenkinson CP, Maezono K, DeFronzo RA, Mandarino LJ. Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes. 2001;50(11):2572–8. https://doi.org/10.2337/diabetes.50.11.2572.

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt AM. Highlighting diabetes mellitus: the epidemic continues. Arterioscler Thromb Vasc Biol. 2018;38(1):e1–8. https://doi.org/10.1161/ATVBAHA.117.310221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, Yu X, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21(1):81–93. https://doi.org/10.1016/j.immuni.2004.06.010.

    Article  CAS  PubMed  Google Scholar 

  22. Shahrokhi SZ, Saeidi L, Sadatamini M, Jafarzadeh M, Rahimipour A, Kazerouni F. Can miR-145–5p be used as a marker in diabetic patients? Arch Physiol Biochem. 2020. https://doi.org/10.1080/13813455.2020.1762657.

    Article  PubMed  Google Scholar 

  23. Shi S, Zhang S, Zhang H, Jin Q, Wu D. Silencing circANKRD36 protects H9c2 cells against lipopolysaccharide-induced injury via up-regulating miR-138. Exp Mol Pathol. 2019;111:104300. https://doi.org/10.1016/j.yexmp.2019.104300.

    Article  CAS  PubMed  Google Scholar 

  24. Sriburi R, Bommiasamy H, Buldak GL, Robbins GR, Frank M, Jackowski S, Brewer JW. Coordinate regulation of phospholipid biosynthesis and secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum biogenesis. J Biol Chem. 2007;282(10):7024–34. https://doi.org/10.1074/jbc.M609490200.

    Article  CAS  PubMed  Google Scholar 

  25. Tang D, Liu L, Ajiakber D, Ye J, Xu J, Xin X, Aisa HA. Anti-diabetic effect of punica granatum flower polyphenols extract in type 2 diabetic rats: activation of Akt/GSK-3beta and inhibition of IRE1alpha-XBP1 pathways. Front Endocrinol (Lausanne). 2018;9:586. https://doi.org/10.3389/fendo.2018.00586.

    Article  PubMed Central  Google Scholar 

  26. Wang L, Yan W, Li X, Liu Z, Tian T, Chen T, Zou L, Cui Z. S100A10 silencing suppresses proliferation, migration and invasion of ovarian cancer cells and enhances sensitivity to carboplatin. J Ovarian Res. 2019;12(1):113. https://doi.org/10.1186/s13048-019-0592-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Yang LZ, Yang DG, Zhang QY, Deng ZN, Wang K, Mao XJ. MiR-21 antagomir improves insulin resistance and lipid metabolism disorder in streptozotocin-induced type 2 diabetes mellitus rats. Ann Palliat Med. 2020;9(2):394–404. https://doi.org/10.21037/apm.2020.02.28.

    Article  PubMed  Google Scholar 

  28. Wei B, Liu YS, Guan HX. MicroRNA-145-5p attenuates high glucose-induced apoptosis by targeting the Notch signaling pathway in podocytes. Exp Ther Med. 2020;19(3):1915–24. https://doi.org/10.3892/etm.2020.8427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wen F, Yang Y, Jin D, Sun J, Yu X, Yang Z. MiRNA-145 is involved in the development of resistin-induced insulin resistance in HepG2 cells. Biochem Biophys Res Commun. 2014;445(2):517–23. https://doi.org/10.1016/j.bbrc.2014.02.034.

    Article  CAS  PubMed  Google Scholar 

  30. Wu H, Wu S, Zhu Y, Ye M, Shen J, Liu Y, Zhang Y, Bu S. Hsa_circRNA_0054633 is highly expressed in gestational diabetes mellitus and closely related to glycosylation index. Clin Epigenetics. 2019;11(1):22. https://doi.org/10.1186/s13148-019-0610-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms. Pharmacol Res. 2018;130:451–65. https://doi.org/10.1016/j.phrs.2018.01.015.

    Article  CAS  PubMed  Google Scholar 

  32. Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:80–4. https://doi.org/10.1016/j.cca.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Wu X, Wu X, Zhou D, Lin T, Ding S, Zhang Y, Xue J, Zhuge Q. The multiple roles of XBP1 in regulation of glucose and lipid metabolism. Curr Protein Pept Sci. 2017;18(6):630–5. https://doi.org/10.2174/1389203717666160627085011.

    Article  CAS  PubMed  Google Scholar 

  34. Yang TT, Song SJ, Xue HB, Shi DF, Liu CM, Liu H. Regulatory T cells in the pathogenesis of type 2 diabetes mellitus retinopathy by miR-155. Eur Rev Med Pharmacol Sci. 2015;19(11):2010–5.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the Provincial Medical and Health Science and Technology Plan (NO. 2019KY019) and Regional Science Program of National Natural Science Foundation of China (NO. 81560766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Song.

Ethics declarations

Conflict of interest

The authors declare that there is no potential interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Pang, L., Zhang, B. et al. Silencing circANKRD36 inhibits streptozotocin-induced insulin resistance and inflammation in diabetic rats by targeting miR-145 via XBP1. Inflamm. Res. 70, 695–704 (2021). https://doi.org/10.1007/s00011-021-01467-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01467-w

Keywords

Navigation