Skip to main content

Advertisement

Log in

Interactions between carboxypeptidase M and kinin B1 receptor in endothelial cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Carboxypeptidase M (CPM) is a glycosylphosphatidylinositol anchored enzyme that plays an important role in the kallikrein–kinin system (KKS). CPM catalytic domain hydrolyzes Arg from C-terminal peptides (i.e., bradykinin and kallidin), generating des-Arg-kinins, the agonists of B1 receptor (B1R). It is known that CPM and kinin B1R are co-localized in the plasma membrane microdomains, where they interact with each other, facilitating receptor signaling.

Aims

We hypothesized here that this CPM-B1R interaction could also affect the activity of the enzyme.

Methods

Thus, in this work, we evaluated the impact of B1R presence or absence on CPM activity and expression, using primary culture of microvascular endothelial cells from wild-type, kinin B1R knockout mice (B −/−1 ), and transgenic rats overexpressing B1 receptor exclusively in the endothelium. In addition, HEK293T cells, as wells as B −/−1 primary culture of endothelial cells, both transfected with B1R, were also used.

Results

CPM expression and activity were downregulated in cells of knockout mice compared to control and this reduction was rescued after B1R transfection. Cells overexpressing B1R presented higher levels of CPM mRNA, protein, and activity. This profile was reverted by pre-incubation with the B1R antagonist, R715, in highly expressing receptor cells.

Conclusions

Our data show that kinin B1R positively modulates both CPM expression and activity, suggesting that CPM-B1R interaction in membrane microdomains might affect enzyme activity, beyond interfering in receptors signaling. This work highlights the interactions among different components of KKS and contributes to a better understanding of its patho-physiological role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inder KL, Davis M, Hill MM. Ripples in the pond—using a systems approach to decipher the cellular functions of membrane microdomains. Mol BioSyst. 2013;9(3):330–8.

    Article  CAS  PubMed  Google Scholar 

  2. Rossy J, Ma Y, Gaus K. The organisation of the cell membrane: do proteins rule lipids? Curr Opin Chem Biol. 2014;20C:54–9.

    Article  CAS  Google Scholar 

  3. Bissig C, Gruenberg J. Lipid sorting and multivesicular endosome biogenesis. Cold Spring Harb Perspect Biol. 2013;5:a016816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1987;387:569–72.

    Article  CAS  Google Scholar 

  5. Mukherjee S, Maxfield FR. Membrane domains. Annu Rev Cell Dev Biol. 2004;20:839–66.

    Article  CAS  PubMed  Google Scholar 

  6. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  7. Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol. 1999;19:7289–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Skidgel R. Carboxypeptidase M. Handbook of proteolytic enzyme. 3rd ed. Oxford: Academic Press; 2013. p. 1357–66.

    Chapter  Google Scholar 

  9. Deiteren K, Hendriks D, Scharpé S, Lambeir AM. Carboxypeptidase M multiple alliances and unknown partners. Clin Chim Acta. 2009;399:24–39.

    Article  CAS  PubMed  Google Scholar 

  10. Skidgel RA. Basic carboxypeptidases: regulators of peptide hormone activity. Trends Pharmacol Sci. 1988;9:299–304.

    Article  CAS  PubMed  Google Scholar 

  11. Reverter D, Maskos K, Tan F, Skidgel RA, Bode W. Crystal structure of human carboxypeptidase M, a membrane-bound enzyme that regulates peptide hormone activity. J Mol Biol. 2004;338(2):257–69.

    Article  CAS  PubMed  Google Scholar 

  12. Goding JW, Howard MC. Ecto-enzymes of lymphoid cells. Immunol Rev. 1998;161:5–10.

    Article  CAS  PubMed  Google Scholar 

  13. Skidgel RA, Davis RM, Tan F. Human carboxypeptidase M: purification and characterization of a membrane-bound carboxypeptidase that cleaves peptide hormones. J Biol Chem. 1989;264:2236–41.

    CAS  PubMed  Google Scholar 

  14. Tan F, Balsitis S, Black JK, Blöchl A, Mao JF, Becker RP, Schacht D, Skidgel RA. Effect of mutation of two critical glutamic acid residues on the activity and stability of human carboxypeptidase M and characterization of its signal for glycosylphosphatidylinositol anchoring. Biochem J. 2003;370(Pt 2):567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang X, Tan F, Brovkovych V, Zhang Y, Skidgel RA. Cross-talk between carboxypeptidase M and the kinin B1 receptor mediates a new mode of G protein-coupled receptor signaling. J Biol Chem. 2011;286:18547–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Denis CJ, Lambeir AM. The potential of carboxypeptidase M as a therapeutic target in cancer. Expert Opin Ther Targets. 2013;17(3):265–79.

    Article  CAS  PubMed  Google Scholar 

  17. Hadkar V, Sangsree S, Vogel SM, Brovkovych V, Skidgel RA. Carboxypeptidase-mediated enhancement of nitric oxide production in rat lungs and microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L35–45.

    Article  CAS  PubMed  Google Scholar 

  18. Vroling B, Sanders M, Baakman C, Borrmann A, Verhoeven S, Klomp J, Oliveira L, de Vlieg J, Vriend G. GPCRDB: information system for G protein-coupled receptors. Nucleic Acids Res. 2011;39:D309–19.

    Article  CAS  PubMed  Google Scholar 

  19. Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57:27–77.

    Article  CAS  PubMed  Google Scholar 

  20. Mombouli JV, Vanhoutte PM. Kinins and endothelial control of vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1995;35:679–705.

    Article  CAS  PubMed  Google Scholar 

  21. Field JL, Butt SK, Morton IK, Hall JM. Bradykinin B2 receptors and coupling mechanisms in the smooth muscle of the guinea-pig taenia caeci. Br J Pharmacol. 1994;113(2):607–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oliveira L, Paiva AC, Sander C, Vriend G. A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol Sci. 1994;15(6):170–2.

    Article  CAS  PubMed  Google Scholar 

  23. Marceau F. Kinin B1 receptors: a review. Immunopharmacology. 1995;30:1–26.

    Article  CAS  PubMed  Google Scholar 

  24. Steranka LR, Manning DC, DeHaas CJ, Ferkany JW, Borosky SA, Connor JR, Vavrek RJ, Stewart JM, Snyder SH. Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. PNAS. 1988;85(9):3245–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marceau F, Bachvarov DR. Kinin receptors. Clin Rev Allergy Immunol. 1998;16(4):385–401.

    Article  CAS  PubMed  Google Scholar 

  26. Leeb-Lundberg LM, Kang DS, Lamb ME, Fathy DB. The human B1 bradykinin receptor exhibits high ligand-independent, constitutive activity. Roles of residues in the fourth intracellular and third transmembrane domains. J Biol Chem. 2001;276(12):8785–92.

    Article  CAS  PubMed  Google Scholar 

  27. Faussner A, Bathon JM, Proud D. Comparison of the responses of B1 and B2 kinin receptors to agonist stimulation. Immunopharmacology. 1999;45(1–3):13–20.

    Article  CAS  PubMed  Google Scholar 

  28. Kang DS, Gustafsson C, Mörgelin M, Leeb-Lundberg LM. B1 bradykinin receptor homo-oligomers in receptor cell surface expression and signaling: effects of receptor fragments. Mol Pharmacol. 2005;67(1):309–18.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Tan F, Zhang Y, Skidgel RA. Carboxypeptidase M and kinin B1 receptors interact to facilitate efficient B1 signaling from B2 agonists. J Biol Chem. 2008;283(12):7994–8000.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Brovkovych V, Brovkovych S, Tan F, Lee BS, Sharma T, Skidgel RA. Dynamic receptor-dependent activation of inducible nitric-oxide synthase by ERK-mediated phosphorylation of Ser745. J Biol Chem. 2007;282(44):32453–61.

    Article  CAS  PubMed  Google Scholar 

  31. Marcic B, Deddish PA, Jackman HL, Erdos EG, Tan F. Effects of the N-terminal sequence of ACE on the properties of its C-domain. Hypertension. 2000;36:116–21.

    Article  CAS  PubMed  Google Scholar 

  32. Chen Z, Deddish PA, Minshall RD, Becker RP, Erdös EG, Tan F. Human ACE and bradykinin B2 receptors form a complex at the plasma membrane. FASEB J. 2006;20(13):2261–70.

    Article  CAS  PubMed  Google Scholar 

  33. Erdös EG, Deddish PA. The kinin system: suggestions to broaden some prevailing concepts. Int Immunopharmacol. 2002;2(13–14):1741–6.

    Article  PubMed  Google Scholar 

  34. Sabatini RA, Guimarães PB, Fernandes L, et al. ACE activity is modulated by kinin B2 receptor. Hypertension. 2008;51(3):689–95.

    Article  CAS  PubMed  Google Scholar 

  35. Pesquero JB, Araujo RC, Heppenstall PA, Stucky CL, Silva JA Jr, Walther T, Oliveira SM, Pesquero JL, Paiva AC, Calixto JB, Lewin GR, Bader M. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. PNAS. 2000;97(14):8140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Merino VF, Todiras M, Campos LA, Saul V, Popova E, Baltatu OC, Pesquero JB, Bader M. Increased susceptibility to endotoxic shock in transgenic rats with endothelial overexpression of kinin B(1) receptors. J Mol Med. 2008;86(7):791–8.

    Article  CAS  PubMed  Google Scholar 

  37. Chen SF, Fei X, Li SH. A new simple method for isolation of microvascular endothelial cells avoiding both chemical and mechanical injuries. Microvasc Res. 1995;50:119–28.

    Article  PubMed  Google Scholar 

  38. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  39. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  CAS  PubMed  Google Scholar 

  40. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  41. Bhoola KD, Figueroa C, Worthy K. Bioregulation of kinins: kallikreins, kininogens and kininases. Pharmacol. 1992;44:1–79.

    CAS  Google Scholar 

  42. Erdös EG, Skidgel RA. Metabolism of bradykinin by peptidases in health and disease. In: Farmer SG, editor. The Kinin system. London: Academic Press; 1997. p. 111–41.

    Chapter  Google Scholar 

  43. Erdös EG. Kinins, the long march–a personal view. Cardiovasc Res. 2002;54(3):485–91.

    Article  PubMed  Google Scholar 

  44. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci. 2001;2(4):274–86.

    Article  CAS  PubMed  Google Scholar 

  45. Devi LA. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol Sci. 2001;22(10):532–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kang DS, Ryberg K, Mörgelin M, Leeb-Lundberg LM. Spontaneous formation of a proteolytic B1 and B2 bradykinin receptor complex with enhanced signaling capacity. J Biol Chem. 2004;279(21):22102–7.

    Article  CAS  PubMed  Google Scholar 

  47. Quitterer U, AbdAlla S. Vasopressor meets vasodepressor: the AT1-B2 receptor heterodimer. Biochem Pharmacol. 2014;88(3):284–90.

    Article  CAS  PubMed  Google Scholar 

  48. Abadir PM, Periasamy A, Carey RM, Siragy HM. Angiotensin II type 2 receptor-bradykinin B2 receptor functional heterodimerization. Hypertension. 2006;48(2):316–22.

    Article  CAS  PubMed  Google Scholar 

  49. AbdAlla S, Lother H, Quitterer U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature. 2000;407(6800):94–8.

    Article  CAS  PubMed  Google Scholar 

  50. Silva LS, Peruchetti DB, Silva CTF, Ferreira-DaSilva AT, Perales J, Caruso-Neves C, Pinheiro AAS. Interaction between bradykinin B2 and Ang-(1–7) Mas receptors regulates erythrocyte invasion by Plasmodium falciparum. Biochem Biophys Acta. 2016;1860(11PtA):2438–44.

    Article  CAS  PubMed  Google Scholar 

  51. Scott JD, Pawson T. Cell signaling in space and time: where proteins come together and when they’re apart. Science. 2009;326(5957):1220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eisener-Dorman AF, Lawrence DA, Bolivar VJ. Cautionary Insights on Knockout Mouse Studies: the Gene or Not the Gene? Brain Behav Immun. 2009;23(3):318–24.

    Article  CAS  PubMed  Google Scholar 

  53. Low MG. Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins. FASEB J. 1989;3(5):1600–8.

    Article  CAS  PubMed  Google Scholar 

  54. Skidgel RA. Structure and function of mammalian zinc carboxypeptidases. Zinc metalloproteases in health and disease. London: Taylor and Francis Ltd.; 1996. p. 241–83.

    Google Scholar 

  55. Sun X, Wiesner B, Lorenz D, Papsdorf G, Pankow K, Wang P, Dietrich N, Siems WE, Maul B. Interaction of angiotensin-converting enzyme (ACE) with membrane-bound carboxypeptidase M (CPM)—a new function of ACE. Biol Chem. 2008;389(12):1477–85.

    Article  CAS  PubMed  Google Scholar 

  56. Proud D, Kaplan AP. Kinin formation: mechanisms and role in inflammatory disorders. Annu Rev Immunol. 1988;6:49–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eduardo Spitti Resende for technical assistance.

Funding

This work was supported by grants from the São Paulo State Research Foundation—FAPESP (Grant Nos. 2014/03790-5 and 2014/27198-8) and research fellows from the Brazilian National Research Council (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Grant No. 374/12), and Deutsche Akademische Austauchdienst Probral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Bosco Pesquero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Mauro Teixeira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, P.B., da Silva, R.F., Hoff, C.C. et al. Interactions between carboxypeptidase M and kinin B1 receptor in endothelial cells. Inflamm. Res. 68, 845–855 (2019). https://doi.org/10.1007/s00011-019-01264-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01264-6

Keywords

Navigation