Skip to main content

Advertisement

Log in

Proinflammatory switch from Gαs to Gαi signaling by Glucagon-like peptide-1 receptor in murine splenic monocyte following burn injury

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Glucagon-like peptide-1 (GLP-1)-based therapy via G protein-coupled receptor (GPCR) GLP-1R, to attenuate hyperglycemia in critical care has attracted great attention. However, the exaggerated inflammation by GLP-1R agonist, Exendin-4, in a mouse model of burn injury was quite unexpected. Recent studies found that GPCR might elicit proinflammatory effects by switching from Gαs to Gαi signaling in the immune system. Thus, we aimed to investigate the possible Gαs to Gαi switch in GLP-1R signaling in monocyte following burn injury.

Materials and methods

Splenic monocytes from sham and burn mice 24 h following burn injury were treated with consecutive doses of Exendin-4 alone or in combination with an inhibitor of Gαi signaling (pertussis toxin, PTX), or a blocker of protein kinase A (H89). Cell viability was assessed by CCK-8, and the supernatant was collected for cytokine measurement by ELISA. Intracellular cAMP level, phosphorylated PKA activity, and nuclear NF-κB p65 were determined by ELISA, ERK1/2 activation was analyzed by Western blot. The expression of GLP-1R downstream molecules, Gαs, Gαi and G-protein coupled receptor kinase 2 (GRK2) were examined by immunofluorescence staining and Western blot.

Results

Exendin-4 could inhibit the viability of monocyte from sham rather than burn mice. Unexpectedly, it could also reduce TNF-α secretion from sham monocyte while increase it from burn monocyte. The increased secretion of TNF-α by Exendin-4 from burn monocyte could be reversed by pretreatment of PTX or H89. Accordingly, Exendin-4 could stimulates cAMP production dose dependently from sham instead of burn monocyte. However, the blunt cAMP production from burn monocyte was further suppressed by pretreatment of PTX or H89 after 6-h incubation. Nevertheless, phosphorylated PKA activity was significantly increased by low dose of Exendin-4 in sham monocyte, by contrast, it was enhanced by high dose of Exendin-4 in burn monocyte after 1-h incubation. Following Exendin-4 treatment for 2 h ex vivo, total nuclear NF-κB and phosphorylated NF-κB activity, as well as cytoplasmic pERK1/2 expressions were reduced in sham monocyte, however, only pERK1/2 was increased by Exendin-4 in burn monocytes. Moreover, reduced expressions of GLP-1R, GRK-2 and Gαs in contrast with increased expression of Gαi were identified in burn monocyte relative to sham monocyte.

Conclusions

This study presents an unexpected proinflammatory switch from Gαs to Gαi signaling in burn monocyte, which promotes ERK1/2 and NF-κB activation and the downstream TNF-α secretion. This phenomenon is most probably responsible for proinflammatory response evoked by Gαs agonist Exendin-4 following burn injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pinelli NR, Jones MC, Monday LM, Smith Z, Rhoney DH. Exogenous glucagon-like peptide-1 for hyperglycemia in critically ill patients. Ann Pharmacother. 2012;46:124–9.

    Article  CAS  PubMed  Google Scholar 

  2. Lebherz C, Schlieper G, Mollmann J, Kahles F, Schwarz M, Brunsing J, et al. GLP-1 levels predict mortality in patients with critical illness as well as end-stage renal disease. Am J Med. 2017;130:833–41 e3.

    Article  CAS  PubMed  Google Scholar 

  3. Kahles F, Meyer C, Mollmann J, Diebold S, Findeisen HM, Lebherz C, et al. GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes. 2014;63:3221–9.

    Article  CAS  PubMed  Google Scholar 

  4. Yanay O, Bailey AL, Kernan K, Zimmerman JJ, Osborne WR. Effects of exendin-4, a glucagon like peptide-1 receptor agonist, on neutrophil count and inflammatory cytokines in a rat model of endotoxemia. J Inflamm Res 2015;8:129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Parlevliet ET, Geerling JJ, van der Tuin SJ, Zhang H, Bieghs V, et al. Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration. Br J Pharmacol. 2014;171:723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes. 2010;59:1030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yusta B, Baggio LL, Koehler J, Holland D, Cao X, Pinnell LJ, et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes. 2015;64:2537–49.

    Article  CAS  PubMed  Google Scholar 

  8. Shiraishi D, Fujiwara Y, Komohara Y, Mizuta H, Takeya M. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys Res Commun. 2012;425:304–8.

    Article  CAS  PubMed  Google Scholar 

  9. Montrose-Rafizadeh C, Avdonin P, Garant MJ, Rodgers BD, Kole S, Yang H, et al. Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology. 1999;140:1132–40.

    Article  CAS  PubMed  Google Scholar 

  10. Magocsi M, Vizi ES, Selmeczy Z, Brozik A, Szelenyi J. Multiple G-protein-coupling specificity of beta-adrenoceptor in macrophages. Immunology. 2007;122:503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weston C, Poyner D, Patel V, Dowell S, Ladds G. Investigating G protein signalling bias at the glucagon-like peptide-1 receptor in yeast. Br J Pharmacol. 2014;171:3651–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shirazi R, Palsdottir V, Collander J, Anesten F, Vogel H, Langlet F, et al. Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc Natl Acad Sci USA. 2013;110:16199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blackwell TS, Christman JW. Sepsis and cytokines: current status. Br J Anaesth. 1996;77:110–7.

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen ST, Krogh-Madsen R, Moller K. Glucose metabolism in critically ill patients: are incretins an important player? J Intensive Care Med. 2015;30:201–8.

    Article  PubMed  Google Scholar 

  15. Watada S, Yu YM, Fischman AJ, Kurihara T, Shen CA, Tompkins RG, et al. Evaluation of intragastric vs intraperitoneal glucose tolerance tests in the evaluation of insulin resistance in a rodent model of burn injury and glucagon-like polypeptide-1 treatment. J Burn Care Res. 2014;35:e66–72.

    Article  Google Scholar 

  16. Shen CA, Fagan S, Fischman AJ, Carter EE, Chai JK, Lu XM, et al. Effects of glucagon-like peptide 1 on glycemia control and its metabolic consequence after severe thermal injury—studies in an animal model. Surgery 2011;149:635–44.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, Nauck MA, et al. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med 2004;32:848–51.

    Article  CAS  PubMed  Google Scholar 

  18. Guo Z, Kavanagh E, Zang Y, Dolan SM, Kriynovich SJ, Mannick JA, et al. Burn injury promotes antigen-driven Th2-type responses in vivo. J Immunol. 2003;171:3983–90.

    Article  CAS  PubMed  Google Scholar 

  19. Xiu F, Stanojcic M, Wang V, Qi P, Jeschke MG. C–C chemokine receptor type 2 expression on monocytes before sepsis onset is higher than that of postsepsis in septic burned patients: a new predictor for sepsis in burned injury. Ann Surg. 2016;264:392–8.

    Article  PubMed  Google Scholar 

  20. Noel G, Guo X, Wang Q, Schwemberger S, Byrum D, Ogle C. Postburn monocytes are the major producers of TNF-alpha in the heterogeneous splenic macrophage population. Shock. 2007;27:312–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wu LL, Dong LW, Liu MS. Alterations of G-protein and adenylate cyclase signaling in rat liver during the progression of sepsis. Shock. 1999;11:39–43.

    Article  CAS  PubMed  Google Scholar 

  22. Wu LL, Yang SL, Yang RC, Hsu HK, Hsu C, Dong LW, et al. G protein and adenylate cyclase complex-mediated signal transduction in the rat heart during sepsis. Shock. 2003;19:533–7.

    Article  CAS  PubMed  Google Scholar 

  23. Link A, Selejan S, Maack C, Lenz M, Bohm M. Phosphodiesterase 4 inhibition but not beta-adrenergic stimulation suppresses tumor necrosis factor-alpha release in peripheral blood mononuclear cells in septic shock. Crit Care. 2008;12:R159.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang QH, Chen Q, Kang JR, Liu C, Dong N, Zhu XM, et al. Treatment with gelsolin reduces brain inflammation and apoptotic signaling in mice following thermal injury. J Neuroinflamm. 2011;8:118.

    Article  CAS  Google Scholar 

  25. Alexander M, Daniel T, Chaudry IH, Schwacha MG. Opiate analgesics contribute to the development of post-injury immunosuppression. J Surg Res. 2005;129:161–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lai AY, Watanabe A, O’Brien T, Kondo M. Pertussis toxin-sensitive G proteins regulate lymphoid lineage specification in multipotent hematopoietic progenitors. Blood. 2009;113:5757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee J, Kim TH, Murray F, Li X, Choi SS, Broide DH, et al. Cyclic AMP concentrations in dendritic cells induce and regulate Th2 immunity and allergic asthma. Proc Natl Acad Sci USA. 2015;112:1529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Foey AD, Field S, Ahmed S, Jain A, Feldmann M, Brennan FM, et al. Impact of VIP and cAMP on the regulation of TNF-alpha and IL-10 production: implications for rheumatoid arthritis. Arthritis Res Ther. 2003;5:R317–28.

    Article  Google Scholar 

  29. Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M. Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol. 2005;174:595–9.

    Article  CAS  PubMed  Google Scholar 

  30. Jenei-Lanzl Z, Zwingenberg J, Lowin T, Anders S, Straub RH. Proinflammatory receptor switch from Galphas to Galphai signaling by beta-arrestin-mediated PDE4 recruitment in mixed RA synovial cells. Brain Behav Immun 2015;50:266–74.

    Article  CAS  PubMed  Google Scholar 

  31. Meisel C, Vogt K, Platzer C, Randow F, Liebenthal C, Volk HD. Differential regulation of monocytic tumor necrosis factor-alpha and interleukin-10 expression. Eur J Immunol. 1996;26:1580–6.

    Article  CAS  PubMed  Google Scholar 

  32. Kambayashi T, Jacob CO, Zhou D, Mazurek N, Fong M, Strassmann G. Cyclic nucleotide phosphodiesterase type IV participates in the regulation of IL-10 and in the subsequent inhibition of TNF-alpha and IL-6 release by endotoxin-stimulated macrophages. J Immunol. 1995;155:4909–16.

    CAS  PubMed  Google Scholar 

  33. Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, et al. beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci USA. 2003;100:940–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stanojcic M, Chen P, Harrison RA, Wang V, Antonyshyn J, Zuniga-Pflucker JC, et al. Leukocyte infiltration and activation of the NLRP3 inflammasome in white adipose tissue following thermal injury. Crit Care Med. 2014;42:1357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Noel JG, Osterburg A, Wang Q, Guo X, Byrum D, Schwemberger S, et al. Thermal injury elevates the inflammatory monocyte subpopulation in multiple compartments. Shock. 2007;28:684–93.

    CAS  PubMed  Google Scholar 

  36. Vairo G, Argyriou S, Bordun AM, Whitty G, Hamilton JA. Inhibition of the signaling pathways for macrophage proliferation by cyclic AMP. Lack of effect on early responses to colony stimulating factor-1. J Biol Chem. 1990;265:2692–701.

    CAS  PubMed  Google Scholar 

  37. Harikumar KG, Wootten D, Pinon DI, Koole C, Ball AM, Furness SG, et al. Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery. Proc Natl Acad Sci USA. 2012;109:18607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mittra S, Bourreau JP. Gs and Gi coupling of adrenomedullin in adult rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2006;290:H1842–7.

    Article  Google Scholar 

  39. Fan H, Li P, Zingarelli B, Borg K, Halushka PV, Birnbaumer L, et al. Heterotrimeric Galpha(i) proteins are regulated by lipopolysaccharide and are anti-inflammatory in endotoxemia and polymicrobial sepsis. Biochim Biophys Acta. 2011;1813:466–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li P, Neubig RR, Zingarelli B, Borg K, Halushka PV, Cook JA, et al. Toll-like receptor-induced inflammatory cytokines are suppressed by gain of function or overexpression of Galpha(i2) protein. Inflammation. 2012;35:1611–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hotta K, Hirshman CA, Emala CW. TNF-alpha increases transcription of Galpha(i-2) in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2000;279:L319–25.

    Article  Google Scholar 

  42. Reithmann C, Gierschik P, Werdan K, Jakobs KH. Tumor necrosis factor alpha up-regulates Gi alpha and G beta proteins and adenylyl cyclase responsiveness in rat cardiomyocytes. Eur J Pharmacol. 1991;206:53–60.

    Article  CAS  PubMed  Google Scholar 

  43. Hagen SA, Kondyra AL, Grocott HP, El-Moalem H, Bainbridge D, Mathew JP, et al. Cardiopulmonary bypass decreases G protein-coupled receptor kinase activity and expression in human peripheral blood mononuclear cells. Anesthesiology. 2003;98:343–8.

    Article  CAS  PubMed  Google Scholar 

  44. Solomon KR, Kurt-Jones EA, Saladino RA, Stack AM, Dunn IF, Ferretti M, et al. Heterotrimeric G proteins physically associated with the lipopolysaccharide receptor CD14 modulate both in vivo and in vitro responses to lipopolysaccharide. J Clin Investig. 1998;102:2019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lentschat A, Karahashi H, Michelsen KS, Thomas LS, Zhang W, Vogel SN, et al. Mastoparan, a G protein agonist peptide, differentially modulates TLR4- and TLR2-mediated signaling in human endothelial cells and murine macrophages. J Immunol. 2005;174:4252–61.

    Article  CAS  PubMed  Google Scholar 

  46. Fan H, Peck OM, Tempel GE, Halushka PV, Cook JA. Toll-like receptor 4 coupled GI protein signaling pathways regulate extracellular signal-regulated kinase phosphorylation and AP-1 activation independent of NFkappaB activation. Shock. 2004;22:57–62.

    Article  CAS  PubMed  Google Scholar 

  47. Lefkowitz RJ, Pierce KL, Luttrell LM. Dancing with different partners: protein kinase a phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. Mol Pharmacol. 2002;62:971–4.

    Article  CAS  PubMed  Google Scholar 

  48. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997;390:88–91.

    Article  CAS  PubMed  Google Scholar 

  49. Park JY, Juhnn YS. cAMP signaling increases histone deacetylase 8 expression via the Epac2-Rap1A-Akt pathway in H1299 lung cancer cells. Exp Mol Med. 2017;49:e297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mirsaidi A, Tiaden AN, Richards PJ. Prostaglandin E2 inhibits matrix mineralization by human bone marrow stromal cell-derived osteoblasts via Epac-dependent cAMP signaling. Sci Rep. 2017;7:2243.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thompson A, Kanamarlapudi V. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Galphaq pathway. Biochem Pharmacol. 2015;93:72–84.

    Article  CAS  PubMed  Google Scholar 

  52. Roed SN, Wismann P, Underwood CR, Kulahin N, Iversen H, Cappelen KA, et al. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Mol Cell Endocrinol. 2014;382:938–49.

    Article  CAS  PubMed  Google Scholar 

  53. Parvataneni S, Gonipeta B, Packiriswamy N, Lee T, Durairaj H, Parameswaran N. Role of myeloid-specific G-protein coupled receptor kinase-2 in sepsis. Int J Clin Exp Med. 2011;4:320–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Patial S, Saini Y, Parvataneni S, Appledorn DM, Dorn GW 2nd, Lapres JJ, et al. Myeloid-specific GPCR kinase-2 negatively regulates NF-kappaB1p105-ERK pathway and limits endotoxemic shock in mice. J Cell Physiol. 2011;226:627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation (81272089), the National Basic Research Program of China (2012 CB518102), and Twelve-Five Plan for Military Scientific Foundation (BWS12J050).

Author information

Authors and Affiliations

Authors

Contributions

QHZ: development of the concept, conduction of most experiments, generation of all the data and figures, drafting and final approval the paper. JWH, GLL, XJJ and XDY: conduct part of the experiments. YMY: providing part of the fund and the personnel.

Corresponding authors

Correspondence to Qing-Hong Zhang or Yong-Ming Yao.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, QH., Hao, JW., Li, GL. et al. Proinflammatory switch from Gαs to Gαi signaling by Glucagon-like peptide-1 receptor in murine splenic monocyte following burn injury. Inflamm. Res. 67, 157–168 (2018). https://doi.org/10.1007/s00011-017-1104-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1104-9

Keywords

Navigation