Skip to main content

Advertisement

Log in

G protein coupled receptors signaling pathways implicate in inflammatory and immune response of rheumatoid arthritis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

G protein-coupled receptors (GPCRs) are transmembrane receptor proteins, which allow the transfer of signals across the membrane. Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis and accompanied with inflammatory and abnormal immune response. GPCRs signaling pathways play a significant role in inflammatory and immune response processes including RA.

Findings

In this review, we have focused on the advances in GPCRs signaling pathway implicating the inflammatory and immune response of RA. The signaling pathways of GPCRs–adenylyl cyclase (AC)–cyclic adenosine 3′, 5′-monophosphate (cAMP) include β2 adrenergic receptors (β2-ARs)–AC–cAMP signaling pathways, E-prostanoid2/4 (EP2/4)–AC–cAMP signaling pathways and so on. Regulatory proteins, such as G protein-coupled receptor kinases (GRKs) and β-arrestins, play important modulatory roles in GPCRs signaling pathway. GPCRs signaling pathway and regulatory proteins implicate the pathogenesis process of inflammatory and immune response.

Conclusion

GPCRs–AC–cAMP signal pathways involve in the inflammatory and immune response of RA. Different signaling pathways are mediated by different receptors, such as β2-AR, PGE2 receptor, chemokines receptor, and adenosine receptor. GRKs and β-arrestins are crucial proteins in the regulation of GPCRs signaling pathways. The potential therapeutic targets as well as strategies to modulate GPCRs signaling pathway are new development trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Latek D, Modzelewska A, Trzaskowski B, et al. G protein-coupled receptors-recent advances. Acta Biochim Pol. 2012;59:515–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cherezov V, Rosenbaum DM, Hanson MA, et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Katritch V, Cherezov V, Stevens RC. Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol. 2013; 53:531–56.

  4. Toquet S, Nguyen Y, Sabbagh A, et al. Severe apoptotic enteropathy caused by methotrexate treatment for rheumatoid arthritis. Joint Bone Spine. 2015.

  5. Wei Y, Sun X, Hua M, et al. Inhibitory effect of a novel antirheumatic drug T-614 on the IL-6-induced RANKL/OPG, IL-17, and MMP-3 expression in synovial fibroblasts from rheumatoid arthritis patients. Biomed Res Int. 2015; 214683.

  6. Cabrera-Vera TM, Vanhauwe J, Thomas TO, et al. Insights into G Protein structure, function, and regulation. Endocr Rev. 2003;24:765–81.

    Article  CAS  PubMed  Google Scholar 

  7. Billard MJ, Gall BJ, Richards KL, et al. G protein signaling modulator-3: a leukocyte regulator of inflammation in health and disease. Am J Clin Exp Immunol. 2014;3:97–106.

    PubMed  PubMed Central  Google Scholar 

  8. de Munnik Sabrina M, Smit Martine J, Leurs Rob, et al. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front Pharmacol. 2015;6:1–27.

    Article  Google Scholar 

  9. Jenei-Lanzl Z, Zwingenberg J, Lowin T, et al. Proinflammatory receptor switch from Gαs to Gαi signaling by β-arrestin-mediated PDE4 recruitment in mixed RA synovial cells. Brain Behav Immun. 2015;50:266–74.

    Article  CAS  PubMed  Google Scholar 

  10. Tan SY, Xiao L, Pi X, et al. Aberrant Gi protein coupled receptor-mediated cell survival signaling in rheumatoid arthritis B cell lines. Front Biosci. 2007;12:1651–60.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Li Y, He Y, et al. Expression of G protein αq subunit is decreased in lymphocytes from patients with rheumatoid arthritis and is correlated with disease activity. Scand J Immunol. 2012;75:203–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chen Q, Wei W. Effects and mechanisms of glucosides of chaenomeles speciosa on collagen-induced arthritis in rats. Int Immunopharmacol. 2003;3:593–608.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang LL, Wei W, Wang NP, et al. Paeoniflorin suppresses inflammatory mediator production and regulates G protein-coupled signaling in fibroblast -like synoviocytes of collagen induced arthritic rats. Inflamm Res. 2008;57:388–95.

    Article  CAS  PubMed  Google Scholar 

  14. Liu D, Li P, Song S, et al. Pro-apoptotic effect of epigallo-catechin-3-gallate on B lymphocytes through regulating BAFF/PI3K/Akt/mTOR signaling in rats with collagen-induced arthritis. Eur J Pharmacol. 2012;690:214–25.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang P, Mende U. Regulators of G-protein signaling in the heart and their potential as therapeutic targets. Circ Res. 2011;109:320–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serebryany E, Zhu GA, Yan EC, et al. Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. Biochim Biophys Acta. 2012;1818:225–33.

    Article  CAS  PubMed  Google Scholar 

  17. Lorton D, Bellinger DL, Schaller JA. Altered sympathetic-to-immune cell signaling via β2-adrenergic receptors in adjuvant arthritis. Clin Dev Immunol. 2013;2013:764395.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu B, Arlehag L, Dahlquist SB, et al. β2-Adrenergic receptor gene single-nucleotide polymorphisms are associated with rheumatoid arthritis in northern Swede. Scand J Rheumatol. 2004;33:395–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wahle M, Krause A, Ulrichs T, et al. Disease activity related catecholamine response of lymphocytes from patients with rheumatoid arthritis. Ann NY Acad Sci. 1999;876:287–96.

    Article  CAS  PubMed  Google Scholar 

  20. Elenkov IJ, Wilder RL, Chrousos GP, et al. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595–638.

    CAS  PubMed  Google Scholar 

  21. Baerwald C, Graefe C, Muhl C, et al. Beta 2-adrenergic receptors on peripheral blood mononuclear cells in patients with rheumatic diseases. Eur J Clin Invest 1992; 1(Suppl 1):42–6.

  22. Baerwald CG, Laufenberg M, Specht T, et al. Impaired sympathetic influence on the immune response in patients with rheumatoid arthritis due to lymphocyte subset-specific modulation of beta 2-adrenergic receptors. Br J Rheumatol. 1997;36:1262–9.

    Article  CAS  PubMed  Google Scholar 

  23. Wahle M, Neumann RP, Moritz F, et al. Beta2-adrenergic receptors mediate the differential effects of catecholamines on cytokine production of PBMC. J Interferon Cytokine Res. 2005;25:384–94.

    Article  CAS  PubMed  Google Scholar 

  24. Lombardi MS, Kavelaars A, Schedlowski M, et al. Decreased expression and activity of G-protein-coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FASEB J. 1999;13:715–25.

    CAS  PubMed  Google Scholar 

  25. Zhao W, Tong T, Wang L, Li PP, et al. Chicken type II collagen induced immune tolerance of mesenteric lymph node lymphocytes by enhancing beta 2-adrenergic receptor desensitization in rats with collagen-induced arthritis. Int Immunopharmacol. 2011;11:12–8.

    Article  CAS  PubMed  Google Scholar 

  26. Wu H, Wei W, Song L, et al. Paeoniflorin induced immune tolerance of mesenteric lymph node lymphocytes via enhancing beta 2-adrenergic receptor desensitization in rats with adjuvant arthritis. Int Immunopharmacol. 2007;7:662–73.

    Article  CAS  PubMed  Google Scholar 

  27. Xu HM, Wei W, Jia XY, et al. Effects and mechanisms of total glucosides of paeony on adjuvant arthritis in rats. J Ethnopharmacol. 2007;109:442–8.

    Article  CAS  PubMed  Google Scholar 

  28. Chang Y, Wei W, Zhang L, et al. Effects and mechanisms of total glucosides of paeony on synoviocytes activities in rat collagen-induced arthritis. J Ethnopharmacol. 2009;121:43–8.

    Article  CAS  PubMed  Google Scholar 

  29. McCoy JM, Wicks JR, Audoly LP. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J Clin Invest. 2002;110:651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boniface K, Bak-Jensen KS, Li Y, et al. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med. 2009;206:535–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akaogi J, Nozaki T, Satoh M, et al. Role of PGE2 and EP receptors in the pathogenesis of rheumatoid arthritis and as a novel therapeutic strategy. Endocr Metab Immune Disord Drug Targets. 2006;6:383–94.

    Article  CAS  PubMed  Google Scholar 

  32. Shibata-Nozaki T, Ito H, Mitomi H, et al. Endogenous prostaglandin E2 in hibits aberrant overgrowth of rheumatoid synovial tissue and thedevelopment of osteoclast activity through EP4 receptor. Arthritis Rheum. 2011;63:2595–605.

    Article  CAS  PubMed  Google Scholar 

  33. Kojima F, Kapoor M, Kawai S, et al. Prostaglandin E2 activates Rap1 via P2/EP4 receptors and cAMP-signaling in rheumatoid synovial fibroblasts: involvement of Epac1 and PKA. Prostaglandins Other Lipid Mediat. 2009;89:26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kunisch E, Jansen A, Kojima F, et al. Prostaglandin E2 differentially modulates proinflammatory/prodestructive effects of TNF-α on synovial fibroblasts via specific E prostanoid receptors/cAMP. J Immunol. 2009;183:1328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dai M, Wei W, Shen YX, et al. Glucosides of Chaenomeles speciosa remit rat adjuvant arthritis by inhibiting synoviocyte activities. Acta Pharmacol Sin. 2003;24:1161–6.

    CAS  PubMed  Google Scholar 

  36. Zheng YQ, Wei W, Zhu L, et al. Effects and mechanisms of Paeoniflorin, a bioactive glucoside from paeony root, on adjuvant arthritis in rats. Inflamm Res. 2007;56:182–8.

    Article  CAS  PubMed  Google Scholar 

  37. Szekanecz Z, Vegvari A. Chemokines and chemokine receptors in arthritis. Front Biosci (Schol. Ed.). 2010; 2:153–167.

  38. Thelen M, Stein JV. How chemokines invite leukocytes to dance. Nat Immunol. 2008;9:953–9.

    Article  CAS  PubMed  Google Scholar 

  39. Cotton M, Claing A. G protein-coupled receptors stimulation and the control of cell migration. Cell Signal. 2009;21:1045–53.

    Article  CAS  PubMed  Google Scholar 

  40. Thelen M. Dancing to the tune of chemokines. Nat Immunol. 2001;2:129–34.

    Article  CAS  PubMed  Google Scholar 

  41. Szekanecz Z, Koch AE. Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat Rev Rheumatol. 2016;12:5–13.

    Article  CAS  PubMed  Google Scholar 

  42. Chen X, Oppenheim JJ, Howard OM. Chemokines and chemokine receptors as novel therapeutic targets in rheumatoid arthritis (RA): inhibitory effects of traditional chinese medicinal components. Cell Mol Immunol. 2004;1:336–42.

    CAS  PubMed  Google Scholar 

  43. Filer A, Raza K, Salmon M, et al. The role of chemokines in leucocyte–stromal interactions in rheumatoid arthritis. Front Biosci. 2008;13:2674–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katschke KJ Jr, Rottman JB, Ruth JH, Qin S, et al. Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum. 2001;44:1022–32.

    Article  CAS  PubMed  Google Scholar 

  45. Bruhl H, Cihak J, Schneider MA, et al. Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J Immunol. 2004;172:890–8.

    Article  PubMed  Google Scholar 

  46. Talbot J, Bianchini FJ, Nascimento DC, et al. CCR2 expression in neutrophils plays a critical role in their migration into the joints in rheumatoid arthritis. Arthritis Rheumatol. 2015;67:1751–9.

    Article  CAS  PubMed  Google Scholar 

  47. Han SW, Sa KH, Kim SI, et al. CCR5 gene polymorphism is a genetic risk factor for radiographic severity of rheumatoid arthritis. Tissue Antigens. 2012;80:416–23.

    Article  CAS  PubMed  Google Scholar 

  48. Pickens SR, Chamberlain ND, Volin MV, et al. Role of the CCL21 and CCR7 pathways in rheumatoid arthritis angiogenesis. Arthritis Rheum. 2012;64:2471–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen Z, Kim SJ, Essani AB, et al. Characterising the expression and function of CCL28 and its corresponding receptor, CCR10, in RA pathogenesis. Ann Rheum Dis. 2015;74:1898–906.

    Article  CAS  PubMed  Google Scholar 

  50. Schmutz C, Hulme A, Burman A, et al. Chemokine receptors in the rheumatoid synovium: upregulation of CXCR5. Arthritis Res Ther. 2005;7:R217–29.

    Article  CAS  PubMed  Google Scholar 

  51. Patel DD, Zachariah JP, Whichard LP, et al. CXCR3 and CCR5 ligands in rheumatoid arthritis synovium. Clin Immunol. 2001;98:39–45.

    Article  CAS  PubMed  Google Scholar 

  52. Godessart N, Kunkel SL. Chemokines in autoimmune disease. Curr Opin Immunol. 2001;13:670–5.

    Article  CAS  PubMed  Google Scholar 

  53. Laragione T, Brenner M, Sherry B, et al. CXCL10 and its receptor CXCR3 regulate synovial fibroblast invasion in rheumatoid arthritis. Arthritis Rheum. 2011;63:3274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee EY, Seo M, Juhnn YS, et al. Potential role and mechanism of IFN-gamma inducible protein-10 on receptor activator of nuclear factorkappa-B ligand (RANKL) expression in rheumatoid arthritis. Arthritis Res Ther.

  55. Borea PA, Varani K, Vincenzi F, et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev. 2015;67:74–102.

    Article  PubMed  Google Scholar 

  56. Fredholm BB, IJzerman AP, Jacobson KA, et al. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–52.

    CAS  PubMed  Google Scholar 

  57. Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5:247–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414:916–20.

    Article  CAS  PubMed  Google Scholar 

  59. Forrest CM, Harman G, McMillan RB, et al. Modulation of cytokine release by purine receptors in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2005;23:89–92.

    CAS  PubMed  Google Scholar 

  60. Mediero A, Perez-Aso M, Cronstein BN. Activation of adenosine A(2A) receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NF-κB nuclear translocation. Br J Pharmacol. 2013;169:1372–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vincenzi F, Padovan M, Targa M, et al. A(2A) adenosine receptors are differentially modulated by pharmacological treatments in rheumatoid arthritis patients and their stimulation ameliorates adjuvant-induced arthritis in rats. PLoS One. 2013;8:e54195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zheng J, Wang R, Zambraski E, et al. Protective roles of adenosine A1, A2A, and A3 receptors in skeletal muscle ischemia and reperfusion injury. Am J Physiol Heart Circ Physiol. 2007;293:H3685–91.

    Article  CAS  PubMed  Google Scholar 

  63. Fossetta J, Jackson J, Deno G, et al. Pharmacological analysis of calcium responses mediated by the human A3 adenosine receptor in monocyte-derived dendritic cells and recombinant cells. Mol Pharmacol. 2003;63:342–50.

    Article  CAS  PubMed  Google Scholar 

  64. Kim TH, Kim YK, Woo JS. The adenosine A3 receptor agonist Cl-IBMECA induces cell death through Ca2+/ROS-dependent down regulation of ERK and Akt in A172 human glioma cells. Neurochem Res. 2012;37:2667–77.

    Article  CAS  PubMed  Google Scholar 

  65. Shneyvays V, Leshem D, Zinman T, et al. Role of adenosine A1 and A3 receptors in regulation of cardiomyocyte homeostasis after mitochondrial respiratory chain injury. Am J Physiol Heart Circ Physiol. 2005;288:H2792–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shneyvays V, Zinman T, Shainberg A. Analysis of calcium responses mediated by the A3 adenosine receptor in cultured newborn rat cardiac myocytes. Cell Calcium. 2004;36:387–96.

    Article  CAS  PubMed  Google Scholar 

  67. Panther E, IdzkoM Herouy Y, et al. Expression and function of adenosine receptors in human dendritic cells. FASEB J. 2001;15:1963–70.

    Article  CAS  PubMed  Google Scholar 

  68. Schutle G, Fredholm BB. Signaling pathway from the human adenosine A(3) receptor expressed in Chinese hamster ovary cells to the extracellular signal-regulated kinase 1/2. Mol Pharmacol. 2002;62:1137–46.

    Article  Google Scholar 

  69. Varani K, Massara A, Vincenzi F, et al. Normalization of A2A and A3 adenosine receptor up-regulation in rheumatoid arthritis patients by treatment with anti-tumor necrosis factor alpha but not methotrexate. Arthritis Rheum. 2009;60:2880–91.

    Article  CAS  PubMed  Google Scholar 

  70. Varani K, Vincenzi F, Tosi A, et al. Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes. Br J Pharmacol. 2010;160:101–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Haskó G, Cronstein B. Regulation of inflammation by adenosine. Front Immunol. 2013;4:85. doi:10.3389/fimmu.2013.00085.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ochaion A, Bar-Yehuda S, Cohen S, et al. The anti-inflammatory target A(3) adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn’s disease. Cell Immunol. 2009;258:115–22.

    Article  CAS  PubMed  Google Scholar 

  73. Fishman P, Bar-Yehuda S, Madi L, et al. The PI3K-NF-κB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther. 2006;8:1–9.

    Article  Google Scholar 

  74. Rath-Wolfson L, Bar-Yehuda S, Madi L, et al. IB-MECA, an A3 adenosine receptor agonist prevents bone resorption in rats with adjuvant induced arthritis. Clin Exp Rheumatol. 2006;24:400–6.

    CAS  PubMed  Google Scholar 

  75. Bar-Yehuda S, Silverman MH, Kerns WD, et al. The anti-inflammatory effect of A3 adenosine receptor agonists: a novel targeted therapy for rheumatoid arthritis. Expert Opin Investig Drugs. 2007;16:1601–13.

    Article  CAS  PubMed  Google Scholar 

  76. Szabo C, Scott GS, Virag L, et al. Suppression of macrophage inflammatory protein (MIP)-1alpha production and collagen-induced arthritis by adenosine receptor agonists. Br J Pharmacol. 1998;125:379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baharav E, Bar-Yehuda S, Madi L, et al. The anti-inflammatory effect of A3 adenosine receptor agonists in murine autoimmune arthritis models. J Rheumatol. 2005;32:469–76.

    CAS  PubMed  Google Scholar 

  78. Vincenzi F, Targa M, Corciulo C, et al. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One. 2013;8:e65561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jala VR, Haribabu B. Real time imaging of leukotriene B4 mediated cell migration and BLT1 Interactions with β-arrestin. J Vis Exp. 2010; 23.

  80. Shukla AK, Manglik A, Kruse AC, et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature. 2013;497:137–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sato PY, Chuprun JK, Schwartz M, et al. The evolving impact of G protein coupled receptor kinases in cardiac health and disease. Physiol Rev. 2015;95:377–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lombardi MS. Adjuvant arthritis induces down-regulation of G protein-coupled receptor kinases in the immune system. J Immunol. 2001;166:1635–40.

    Article  CAS  PubMed  Google Scholar 

  83. Palczewski K. Structure and functions of arrestins. Protein Sci. 1994; 1355–1361.

  84. Oakley RH, Laporte SA, Holt JA, et al. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor -beta- arrestin complexs after receptor endocytosis. JBiol Chem. 2001;276:19452–60.

    Article  CAS  Google Scholar 

  85. Goodman OB Jr, Krupnick JG, Santini F, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature. 1996;383:447–50.

    Article  CAS  PubMed  Google Scholar 

  86. Lefkowitz RJ, Whalen EJ. β-Arrestins: traffic cops of cell signaling. Curr Opin Cell Biol. 2004;16:162–8.

    Article  CAS  PubMed  Google Scholar 

  87. Fan H. β-Arrestins 1 and 2 are critical regulators of inflammation. Innate Immun. 2013;20:451–60.

    Article  PubMed  Google Scholar 

  88. Wang QT, Zhang LL, Wu HX, et al. The expression change of β-arrestins in fibroblast-like synoviocytes from rats with collagen induced arthritis and the effect of total glucosides of paeony. J Ethnopharmacol. 2011;133:511–6.

    Article  CAS  PubMed  Google Scholar 

  89. Li P, Cook JA, Gilkeson GS, et al. Increased expression of beta arrestin 1 and 2 in murine models of rheumatoid arthritis: isoform specific regulation of inflammation. Mol Immunol. 2011;49:64–74.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Li J, Wei B, Guo A, et al. Deficiency of β-arrestin1 ameliorates collagen-induced arthritis with impaired TH17 cell differentiation. Proc Natl Acad Sci USA. 2013;110:7395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu HX, Chen JY, Wang QT, et al. Expression and function of β-arrestin 2 stimulated by IL-1β in human fibroblast-like synoviocytes and the effect of paeoniflorin. Int Immunopharmacol. 2012;12:701–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81173075, 31100640, 81330081 and 81473223), China Postdoctoral Science Foundation (No. 2013M540509), Anhui Province Postdoctoral Science Foundation (No. 2016B134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingling Zhang or Wei Wei.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, J., Zhang, F., Zhang, L. et al. G protein coupled receptors signaling pathways implicate in inflammatory and immune response of rheumatoid arthritis. Inflamm. Res. 66, 379–387 (2017). https://doi.org/10.1007/s00011-016-1011-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-1011-5

Keywords

Navigation