Skip to main content
Log in

Interaction between STAT3 gene polymorphisms and smoking on Crohn’s disease susceptibility: a case–control study in a Chinese Han population

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aims

The aim of this study was to investigate the impact of the signal transducer and activator of transcription 3 (STAT3) gene and additional STAT3 gene–smoking interaction on Crohn’s disease (CD) risk based on a Chinese population.

Methods

A total of 1012 participants (491 men, 521 women), were selected, including 502 CD patients and 510 normal controls. The mean age of all participants was 42.3 ± 11.2 years. Logistic regression model was used to examine the association between single nucleotide polymorphism (SNP) of STAT3 and CD risk; the odds ratio (OR) and 95 % confident interval (95 % CI) were calculated. Generalized multifactor dimensionality reduction was employed to analyze the interaction among several SNPs.

Results

Logistic analysis showed the significant association between genotypes of variants in two SNP and decreased CD risk, after covariates adjustment. The carriers of homozygous mutant of two SNP polymorphism revealed decreased CD risk than those with wild-type homozygotes; OR (95 % CI) was 0.75 (0.59–0.93) and 0.68 (0.57–0.91), respectively. There was a significant two-locus model (p = 0.0107) involving rs744166 and smoking, indicating a potential gene–environment interaction between rs744166 and smoking. Overall, the cross-validation consistency was 10/10, and the testing accuracy was 62.17 %, and never smokers with TC or CC genotype have the lowest CD risk, compared to smokers with TT genotype; OR (95 % CI) was 0.52 (0.31–0.82), after covariate adjustment.

Conclusions

Our results support an important association of rs744166 and rs4796793 with decreased CD risk, and additional interaction between rs744166 and smoking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ng SC, Bernstein CN, Vatn MH, Lakatos PL, Loftus EV Jr, Tysk C, O’Morain C, Moum B, Colombel JF. Epidemiology and Natural history task force of the International Organization of inflammatory bowel disease (IOIBD). Geographical variability and environmental risk factors in inflammatory bowel disease. Gut. 2013;62:630–49.

    Article  PubMed  Google Scholar 

  2. Zheng CQ, Hu GZ, Zeng ZS, Lin LJ, Gu GG. Progress in searching for susceptibility gene for inflammatory bowel disease by positional cloning. World J Gastroenterol. 2003;9(8):1646–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Molodecky NA, Kaplan GG. Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (NY). 2010;6(5):339–46.

    Google Scholar 

  4. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8(6):458–66.

    Article  CAS  PubMed  Google Scholar 

  5. Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, Turka LA, Ernst M, Saris CJ, O’Shea JJ, Hunter CA. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol. 2007;8(12):1363–71.

    Article  CAS  PubMed  Google Scholar 

  6. Laouar Y, Welte T, Fu XY, Flavell RA. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity. 2003;19(6):903–12.

    Article  CAS  PubMed  Google Scholar 

  7. Akira S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene. 2000;19(21):2607–11.

    Article  CAS  PubMed  Google Scholar 

  8. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Genetics Consortium NIDDKIBD, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Belgian-French IBD Consortium, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sato K, Shiota M, Fukuda S, Iwamoto E, Machida H, Inamine T, Kondo S, Yanagihara K, Isomoto H, Mizuta Y, Kohno S, Tsukamoto K. Strong evidence of a combination polymorphism of the tyrosine kinase 2 gene and the signal transducer and activator of transcription 3 gene as a DNA-based biomarker for susceptibility to Crohn’s disease in the Japanese population. J Clin Immunol. 2009;29(6):815–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferguson LR, Han DY, Fraser AG, Huebner C, Lam WJ, Morgan AR, Duan H, Karunasinghe N. Genetic factors in chronic inflammation: single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn’s disease in a New Zealand population. Mutat Res. 2010;690(1–2):108–15.

    Article  CAS  PubMed  Google Scholar 

  11. Cénit MC, Alcina A, Márquez A, Mendoza JL, Díaz-Rubio M, de las Heras V, Izquierdo G, Arroyo R, Fernández O, de la Concha EG, Matesanz F, Urcelay E. STAT3 locus in inflammatory bowel disease and multiple sclerosis susceptibility. Genes Immun. 2010;11(3):264–8.

    Article  PubMed  Google Scholar 

  12. Peter I, Mitchell AA, Ozelius L, Erazo M, Hu J, Doheny D, Abreu MT, Present DH, Ullman T, Benkov K, Korelitz BI, Mayer L, Desnick RJ, New York Crohn’s Disease Working Group. Evaluation of 22 genetic variants with Crohn’s disease risk in the Ashkenazi Jewish population: a case–control study. BMC Med Genet. 2011;12:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Franke A, Balschun T, Karlsen TH, Hedderich J, May S, Lu T, Schuldt D, Nikolaus S, Rosenstiel P, Krawczak M, Schreiber S. Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet. 2008;40:713–5.

    Article  CAS  PubMed  Google Scholar 

  14. Polgar N, Csongei V, Szabo M, Zambo V, Melegh BI, Sumegi K, Nagy G, Tulassay Z, Melegh B. Investigation of JAK2, STAT3 and CCR6 polymorphisms and their gene–gene interactions in inflammatory bowel disease. Int J Immunogenet. 2012;39(3):247–52.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Xu B, Zhang H, Fan R, Zhou J, Zhong J. Association between STAT3 gene Polymorphisms and Crohn’s disease susceptibility: a case–control study in a Chinese Han population. Diagn Pathol. 2014;9:104.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ryan BM, Wolff RK, Valeri N, Khan M, Robinson D, Paone A, Bowman ED, Lundgreen A, Caan B, Potter J, Brown D, Croce C, Slattery ML, Harris CC. An analysis of genetic factors related to risk of inflammatory bowel disease and colon cancer. Cancer Epidemiol. 2014;38(5):583–90.

    Article  PubMed  Google Scholar 

  17. Lohman T, Roche AF, Martorell R. Standardization of anthropometric measurements. Champaign: Human Kinetics; 1988.

    Google Scholar 

  18. China Nutrition Society. Chinese residents dietary guide [M]. Beijing: Tibet people’s press; 2008. p. 15–55.

    Google Scholar 

  19. Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, Li MD. A generalized combinatorial approach for detecting gene-by gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet. 2007;80(6):1125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cosin-Aguilar J, Andres-Conejos F, Hernandiz-Martinez A, Solaz-Minguez J, Marrugat J, Bayes-De-Luna A. Effect of smoking on sudden and premature death. J Cardiovasc Risk. 1995;2(4):345–51.

    Article  CAS  PubMed  Google Scholar 

  21. Mahid SS, Minor KS, Soto RE, Hornung CA, Galandiuk S. Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc. 2006;81:1462–71.

    Article  PubMed  Google Scholar 

  22. Higuchi LM, Khalili H, Chan AT, Richter JM, Bousvaros A, Fuchs CS. A prospective study of cigarette smoking and the risk of inflammatory bowel disease in women. Am J Gastroenterol. 2012;107:1399–406.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matalka II, Al-Omari FA, Salama RM, Mohtaseb AH. A novel approach for quantitative assessment of mucosal damage in inflammatory bowel disease. Diagn Pathol. 2013;8:156.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Larsen EP, Bayat A, Vyberg M. Small duct autoimmune sclerosing cholangitis and Crohn colitis in a 10-year-old child. A case report and review of the literature. Diagn Pathol. 2012;7:100.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The writing of this paper was supported by Changzhou Center for Disease Control and Prevention and the First Hospital of Hengyang. We thank all the partners and staff who helped us in the process of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-min Ji.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

J.-h. Li and N. Wu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jh., Wu, N., Yang, Hm. et al. Interaction between STAT3 gene polymorphisms and smoking on Crohn’s disease susceptibility: a case–control study in a Chinese Han population. Inflamm. Res. 65, 573–578 (2016). https://doi.org/10.1007/s00011-016-0941-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0941-2

Keywords

Navigation