Skip to main content
Log in

Transcription-related element gene expression pattern differs between microglia and macrophages during inflammation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Microglia and macrophages play an important role in the innate and adaptive immune systems. Although the resident location of these cells is different, their functions during the polarization response due to various stimuli are very similar. The present study aimed to analyze differences in microglial and macrophage gene expression during inflammation.

Methods

Mouse microglial BV-2 cells were exposed to LPS (10 ng/ml). The levels of gene expression were measured using real-time RT-PCR and whole transcriptome shotgun sequencing.

Results

The level of Jmjd3 gene expression in activated microglia showed a similar pattern to that of macrophages. In both cell types, genes associated with the inflammation response were generally increased whereas genes associated with metabolic and biosynthetic processes were decreased. However, the expression of transcription-related elements other than genes encoding histone modification enzymes showed a significantly different pattern between microglia and macrophages.

Conclusion

Although the function and the gene expression levels of histone modification enzymes showed a similar pattern in microglia and macrophages during inflammation, the expression of transcription-related elements in both cell types showed a completely different pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nelson PT, Soma LA, Lavi E. Microglia in diseases of the central nervous system. Ann Med. 2002;34(7–8):491–500.

    Article  PubMed  CAS  Google Scholar 

  2. Chew LJ, Takanohashi A, Bell M. Microglia and inflammation: impact on developmental brain injuries. Mental Retard Dev Disabil Res Rev. 2006;12(2):105–12. doi:10.1002/mrdd.20102.

    Article  Google Scholar 

  3. Jin C, Flavell RA. Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol. 2010;30(5):628–31. doi:10.1007/s10875-010-9440-3.

    Article  PubMed  CAS  Google Scholar 

  4. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci CMLS. 2011;68(5):765–83. doi:10.1007/s00018-010-0567-4.

    Article  CAS  Google Scholar 

  5. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11(11):775–87. doi:10.1038/nri3086.

    Article  PubMed  CAS  Google Scholar 

  6. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34. doi:10.1016/j.cell.2010.02.016.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201. doi:10.1038/nrneurol.2010.17.

    Article  PubMed  Google Scholar 

  8. Ransohoff RM, Cardona AE. The myeloid cells of the central nervous system parenchyma. Nature. 2010;468(7321):253–62. doi:10.1038/nature09615.

    Article  PubMed  CAS  Google Scholar 

  9. Appel SH, Zhao W, Beers DR, Henkel JS. The microglial-motoneuron dialogue in ALS. Acta Myol. 2011;30(1):4–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623. doi:10.1146/annurev.immunol.17.1.593.

    Article  PubMed  CAS  Google Scholar 

  11. Ong CT, Corces VG. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet. 2011;12(4):283–93. doi:10.1038/nrg2957.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 2010;32(3):317–28. doi:10.1016/j.immuni.2010.02.008.

    Article  PubMed  CAS  Google Scholar 

  13. Scott EW, Simon MC, Anastasi J, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science. 1994;265(5178):1573–7.

    Article  PubMed  CAS  Google Scholar 

  14. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–19. doi:10.1016/j.cell.2013.03.035.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, et al. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia. 2012;60(5):717–27. doi:10.1002/glia.22298.

    Article  PubMed  Google Scholar 

  16. Choi MR, Oh DH, Kim SH, Yang BH, Lee JS, Choi J, et al. Fluoxetine up-regulates Bcl-xL expression in rat C6 glioma cells. Psychiatry Invest. 2011;8(2):161–8. doi:10.4306/pi.2011.8.2.161.

    Article  CAS  Google Scholar 

  17. Varier RA, Timmers HT. Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta. 2011;1815(1):75–89. doi:10.1016/j.bbcan.2010.10.002.

    PubMed  CAS  Google Scholar 

  18. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell. 2007;130(6):1083–94. doi:10.1016/j.cell.2007.08.019.

    Article  PubMed  CAS  Google Scholar 

  19. Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex. 2009;26(2):83–94.

    PubMed  Google Scholar 

  20. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95. doi:10.1038/cr.2011.22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7(9):715–27. doi:10.1038/nrg1945.

    Article  PubMed  CAS  Google Scholar 

  22. Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD. JMJD3 is a histone H3K27 demethylase. Cell Res. 2007;17(10):850–7. doi:10.1038/cr.2007.83.

    Article  PubMed  CAS  Google Scholar 

  23. Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, et al. The Jmjd3–Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 2010;11(10):936–44. doi:10.1038/ni.1920.

    Article  PubMed  CAS  Google Scholar 

  24. Jeon YJ, Han SB, Ahn KS, Kim HM. Differential activation of murine macrophages by angelan and LPS. Immunopharmacology. 2000;49(3):275–84.

    Article  PubMed  CAS  Google Scholar 

  25. Bhatt DM, Pandya-Jones A, Tong AJ, Barozzi I, Lissner MM, Natoli G, et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell. 2012;150(2):279–90. doi:10.1016/j.cell.2012.05.043.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282(18):13769–79. doi:10.1074/jbc.M700078200.

    Article  PubMed  CAS  Google Scholar 

  27. Tetreault MP, Wang ML, Yang Y, Travis J, Yu QC, Klein-Szanto AJ, et al. Klf4 overexpression activates epithelial cytokines and inflammation-mediated esophageal squamous cell cancer in mice. Gastroenterology. 2010;139(6):2124e9–2134e9. doi:10.1053/j.gastro.2010.08.048.

    Article  CAS  Google Scholar 

  28. Lee KW, Lee Y, Kwon HJ, Kim DS. Sp1-associated activation of macrophage inflammatory protein-2 promoter by CpG-oligodeoxynucleotide and lipopolysaccharide. Cell Mol Life Sci CMLS. 2005;62(2):188–98. doi:10.1007/s00018-004-4399-y.

    Article  CAS  Google Scholar 

  29. O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346–55. doi:10.1038/nature11862.

    Article  PubMed  CAS  Google Scholar 

  30. Yuk JM, Shin DM, Lee HM, Kim JJ, Kim SW, Jin HS, et al. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by toll-like receptors. Nat Immunol. 2011;12(8):742–51. doi:10.1038/ni.2064.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Hee-Sun Kim for providing BV-2 cells. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2011-0030049).

Conflict of interest

The author(s) declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Chai.

Additional information

Responsible Editor: John Di Battista.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.T., Kim, S.K., Kim, S.H. et al. Transcription-related element gene expression pattern differs between microglia and macrophages during inflammation. Inflamm. Res. 63, 389–397 (2014). https://doi.org/10.1007/s00011-014-0711-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0711-y

Keywords

Navigation