Skip to main content
Log in

Zip14 expression induced by lipopolysaccharides in macrophages attenuates inflammatory response

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

We investigated the role and regulation of zinc transporters in the activation of the inflammatory response in macrophages. Our exploratory computational study found that Zip14 (SLC39A14) was consistently up-regulated in activated macrophages; we therefore focused subsequently on that gene in the mechanistic study.

Material

The expression and function of Zip14 was assessed in primary macrophages obtained by in-vitro differentiation of monocytes from human blood.

Methods

Primary macrophages were subjected to treatments with lipopolysaccharides, cytokines, chemicals, and pharmacological agents. SLC39A14 and inflammatory cytokine gene expressions were assessed by RT-qPCR. Zip14 siRNA knockdown was performed to explore the gene function.

Results

Lipopolysaccharide’s inflammatory stimulus was a strong inducer of SLC39A14 mRNA expression in macrophages. This induction was dependent on calcium signaling, GC-rich DNA-binding, and NF-κB down-regulation. Impregnation of lipopolysaccharide-stimulated macrophages with the glucocorticoid dexamethasone further enhanced Zip14 expression while reducing interleukin-6 and tumor necrosis factor-α production. Zip14 knockdown in macrophages attenuated the expression and secretion of cytokines, indicating a buffering function for this zinc transporter.

Conclusions

Collectively, our results identified the zinc transporter Zip14 as expressed downstream of lipopolysaccharide signals in macrophages. Zip14 induction had a regulatory function in cytokine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Calder PC, Kew S. The immune system: a target for functional foods? Br J Nutr. 2002;88(Suppl 2):S165–77.

    Article  PubMed  CAS  Google Scholar 

  2. Fabris N, Mocchegiani E. Zinc, human diseases and aging. Aging (Milano). 1995;7(2):77–93.

    CAS  Google Scholar 

  3. Leupold D, Poley JR, Meigel WN. Zinc therapy in acrodermatitis enteropathica. Helv Paediatr Acta. 1976;31(2):109–15.

    PubMed  CAS  Google Scholar 

  4. Miller GG, Strittmatter WJ. Identification of human T cells that require zinc for growth. Scand J Immunol. 1992;36(2):269–77.

    Article  PubMed  CAS  Google Scholar 

  5. Provinciali M, Di Stefano G, Fabris N. Dose-dependent opposite effect of zinc on apoptosis in mouse thymocytes. Int J Immunopharmacol. 1995;17(9):735–44.

    Article  PubMed  CAS  Google Scholar 

  6. Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001;14(3–4):315–30.

    Article  PubMed  CAS  Google Scholar 

  7. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science. 1996;272(5264):1013–6.

    Article  PubMed  CAS  Google Scholar 

  8. Vallee BL, Auld DS. Active zinc binding sites of zinc metalloenzymes. Matrix Suppl. 1992;1:5–19.

    PubMed  CAS  Google Scholar 

  9. Nyborg JK, Peersen OB. That zincing feeling: the effects of EDTA on the behaviour of zinc-binding transcriptional regulators. Biochem J. 2004;381(Pt 3):e3–4.

    PubMed  CAS  Google Scholar 

  10. Eide DJ. The SLC39 family of metal ion transporters. Pflugers Arch. 2004;447(5):796–800.

    Article  PubMed  CAS  Google Scholar 

  11. Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr. 2004;24:151–72.

    Article  PubMed  CAS  Google Scholar 

  12. Murgia C, Lang CJ, Truong-Tran AQ, Grosser D, Jayaram L, Ruffin RE, et al. Zinc and its specific transporters as potential targets in airway disease. Curr Drug Targets. 2006;7(5):607–27.

    Article  PubMed  CAS  Google Scholar 

  13. Begum NA, Kobayashi M, Moriwaki Y, Matsumoto M, Toyoshima K, Seya T. Mycobacterium bovis BCG cell wall and lipopolysaccharide induce a novel gene, BIGM103, encoding a 7-TM protein: identification of a new protein family having Zn-transporter and Zn-metalloprotease signatures. Genomics. 2002;80(6):630–45.

    Article  PubMed  CAS  Google Scholar 

  14. Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA. 2005;102(19):6843–8.

    Article  PubMed  CAS  Google Scholar 

  15. Moshage H. Cytokines and the hepatic acute phase response. J Pathol. 1997;181(3):257–66.

    Article  PubMed  CAS  Google Scholar 

  16. Nolan JP. The role of intestinal endotoxin in liver injury: a long and evolving history. Hepatology. 2010;52(5):1829–35.

    Article  PubMed  CAS  Google Scholar 

  17. Matsumura T, Ito A, Takii T, Hayashi H, Onozaki K. Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. J Interferon Cytokine Res. 2000;20(10):915–21.

    Article  PubMed  CAS  Google Scholar 

  18. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177(10):7303–11.

    PubMed  CAS  Google Scholar 

  19. Buxade M, Lunazzi G, Minguillon J, Iborra S, Berga-Bolanos R, Del Val M, et al. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. J Exp Med. 2012;209(2):379–93.

    Article  PubMed  CAS  Google Scholar 

  20. Altemeier WA, Matute-Bello G, Gharib SA, Glenny RW, Martin TR, Liles WC. Modulation of lipopolysaccharide-induced gene transcription and promotion of lung injury by mechanical ventilation. J Immunol. 2005;175(5):3369–76.

    PubMed  CAS  Google Scholar 

  21. Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC, et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med. 2006;203(1):15–20.

    Article  PubMed  CAS  Google Scholar 

  22. Barish GD, Downes M, Alaynick WA, Yu RT, Ocampo CB, Bookout AL, et al. A nuclear receptor atlas: macrophage activation. Mol Endocrinol. 2005;19(10):2466–77.

    Article  PubMed  CAS  Google Scholar 

  23. Ahn SY, Cho CH, Park KG, Lee HJ, Lee S, Park SK, et al. Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-alpha-induced fractalkine expression. Am J Pathol. 2004;164(5):1663–72.

    Article  PubMed  CAS  Google Scholar 

  24. Blume SW, Snyder RC, Ray R, Thomas S, Koller CA, Miller DM. Mithramycin inhibits SP1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo. J Clin Invest. 1991;88(5):1613–21.

    Article  PubMed  CAS  Google Scholar 

  25. Miller DM, Polansky DA, Thomas SD, Ray R, Campbell VW, Sanchez J, et al. Mithramycin selectively inhibits transcription of G-C containing DNA. Am J Med Sci. 1987;294(5):388–94.

    Article  PubMed  CAS  Google Scholar 

  26. Ray R, Snyder RC, Thomas S, Koller CA, Miller DM. Mithramycin blocks protein binding and function of the SV40 early promoter. J Clin Invest. 1989;83(6):2003–7.

    Article  PubMed  CAS  Google Scholar 

  27. Ray R, Thomas S, Miller DM. Mithramycin selectively inhibits the transcriptional activity of a transfected human c-myc gene. Am J Med Sci. 1990;300(4):203–8.

    Article  PubMed  CAS  Google Scholar 

  28. Snyder RC, Ray R, Blume S, Miller DM. Mithramycin blocks transcriptional initiation of the c-myc P1 and P2 promoters. Biochemistry. 1991;30(17):4290–7.

    Article  PubMed  CAS  Google Scholar 

  29. Thastrup O. Role of Ca2(+)-ATPases in regulation of cellular Ca2+ signalling, as studied with the selective microsomal Ca2+-ATPase inhibitor, thapsigargin. Agents Actions. 1990;29(1–2):8–15.

    Article  PubMed  CAS  Google Scholar 

  30. Moore GA, McConkey DJ, Kass GE, O’Brien PJ, Orrenius S. 2,5-Di(tert-butyl)-1,4-benzohydroquinone–a novel inhibitor of liver microsomal Ca2+ sequestration. FEBS Lett. 1987;224(2):331–6.

    Article  PubMed  CAS  Google Scholar 

  31. Hakii H, Fujiki H, Suganuma M, Nakayasu M, Tahira T, Sugimura T, et al. Thapsigargin, a histamine secretagogue, is a non-12-O-tetradecanoylphorbol-13-acetate (TPA) type tumor promoter in two-stage mouse skin carcinogenesis. J Cancer Res Clin Oncol. 1986;111(3):177–81.

    Article  PubMed  CAS  Google Scholar 

  32. Jackson TR, Patterson SI, Thastrup O, Hanley MR. A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J. 1988;253(1):81–6.

    PubMed  CAS  Google Scholar 

  33. Myers JT, Swanson JA. Calcium spikes in activated macrophages during Fcgamma receptor-mediated phagocytosis. J Leukoc Biol. 2002;72(4):677–84.

    PubMed  CAS  Google Scholar 

  34. Feher JJ, Lipford GB. Mechanism of action of ryanodine on cardiac sarcoplasmic reticulum. Biochim Biophys Acta. 1985;813(1):77–86.

    Article  PubMed  CAS  Google Scholar 

  35. Pian-Smith MC, Yada T, Yaney GC, Abdel el Motal SM, Wiedenkeller DE, Sharp GW. Mobilization of Ca2+ from intracellular stores of pancreatic beta-cells by the calcium store blocker TMB-8. Endocrinology. 1988;123(4):1984–91.

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi M, Tanzawa K, Takahashi S. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994;269(1):369–72.

    PubMed  CAS  Google Scholar 

  37. Mattie M, Brooker G, Spiegel S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J Biol Chem. 1994;269(5):3181–8.

    PubMed  CAS  Google Scholar 

  38. Bates MD, Conn PM. Calcium mobilization in the pituitary gonadotrope: relative roles of intra- and extracellular sources. Endocrinology. 1984;115(4):1380–5.

    Article  PubMed  CAS  Google Scholar 

  39. Knoell DL, Liu MJ. Impact of zinc metabolism on innate immune function in the setting of sepsis. Int J Vitam Nutr Res. 2010;80(4–5):271–7.

    PubMed  CAS  Google Scholar 

  40. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13(5):816–25.

    Article  PubMed  CAS  Google Scholar 

  41. Bao S, Liu MJ, Lee B, Besecker B, Lai JP, Guttridge DC, et al. Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappa B. Am J Physiol Lung Cell Mol Physiol. 2010;298(6):L744–54.

    Article  PubMed  CAS  Google Scholar 

  42. Bagley KC, Abdelwahab SF, Tuskan RG, Lewis GK. Calcium signaling through phospholipase C activates dendritic cells to mature and is necessary for the activation and maturation of dendritic cells induced by diverse agonists. Clin Diagn Lab Immunol. 2004;11(1):77–82.

    PubMed  CAS  Google Scholar 

  43. Chow CW, Grinstein S, Rotstein OD. Signaling events in monocytes and macrophages. New Horiz. 1995;3(2):342–51.

    PubMed  CAS  Google Scholar 

  44. Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H. Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci. 2003;23(11):4410–9.

    PubMed  CAS  Google Scholar 

  45. Smith JB, Herschman HR. Targeted identification of glucocorticoid-attenuated response genes: in vitro and in vivo models. Proc Am Thorac Soc. 2004;1(3):275–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biomedical Research Council, Agency for Science, Technology and Research, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie A. Bard-Chapeau.

Additional information

Responsible Editor: Liwu Li.

A. Sayadi and A.-T. Nguyen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayadi, A., Nguyen, AT., Bard, F.A. et al. Zip14 expression induced by lipopolysaccharides in macrophages attenuates inflammatory response. Inflamm. Res. 62, 133–143 (2013). https://doi.org/10.1007/s00011-012-0559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0559-y

Keywords

Navigation